

Welcome to PyActor’s documentation!

The minimalistic python actor middleware

PyActor is a python actor middleware for an object oriented architecture
constructed with the idea of getting two remote actors
to quickly communicate in a very simple, lightweight and minimalistic way.

It supports two versions:

	Threading

	Gevent green threads

It also includes communication between machines using XMLRPC and a second version
that uses RabbitMQ message system in a transparent way.

For install instructions, see Installation.

Visit the repository at GitHub [https://github.com/pedrotgn/pyactor].

See the tuturial for a complete review on the features of PyActor.
And complete it with the Remote Tutorial.

Contents:

	Tutorial
	Installation

	Global indications

	Sample 1 - Basic

	Sample 2 - Sync

	Sample 3 - Timeout

	Sample 4 - Lookup

	Sample 5 - References to actors

	Sample 6 - self.id, proxy and host

	Sample 7 - References extended

	Sample 8 - Futures

	Sample 9 - Callback

	Sample 10 - Parallel

	Sample 11 - Intervals

	Sample 1b - Stopping an Actor (Advanced)

	Remote Tutorial
	Sample 1 - Basic communication

	Sample 2 - Basic communication 2

	Sample 3 - Remote spawning

	Sample 4 - Registry example

	Sample 5 - Multiple Hosts

	Using RabbitMQ

	Main Code
	Context

	Proxy

	Util

	Remote Solutions

	Exceptions

	Threading Type
	Actor

	Intervals

	Parallel

	Future

	Gevent Type
	Actor

	Intervals

	Parallel

	Future

Indices and tables

	Index

	Module Index

	Search Page

Tutorial

A quick guide on how to use the PyActor library through examples.

Installation

This library allows the creation and management of actors in a distributed
system using Python. It follows the classic actor model and tries to be a simple
way to get two remote actors to quickly communicate.

To install the library, use:

python setup.py install

You can check that works with the examples explained in this page, that you can
find in the ./examples directory of this project.

The library requires Gevent.

It is also available at PYPI, so the most easy way of installing PyActor is by:

pip install pyactor

Then you can check the examples from
the repository [https://github.com/pedrotgn/pyactor].

Global indications

This library is implemented using two types of concurrence: threads and green
threads (Gevent). To define which one you want, always use the function
set_context() at the beginning of your script. The default value uses
threads but you can specify the mode with one of the following strings:

	'thread'

	'green_thread'

Then, first of all, a Host is needed in order to create some
actors. To create a host, use the function create_host() which returns
a proxy (Proxy) to the instance of a Host.
You should never work with the instance itself, but always with proxies to
send messages to actors.
When you have the proxy, use it to spawn actors by giving the
class type of the actor to create and one string that will identify it in the
host. The spawn() method will return the proxy
that manages that actor. See example:

h = create_host()
actor1 = h.spawn('id1', MyClass)

The class of an actor must have defined its methods in the _tell and _ask sets
so they can be called through the proxy. In the _tell set will be named those
methods meant to be asynchronous and in the _ask set, the synchronous ones.
In this example we have a class MyClass with a sync method ask_me() and an
async method tell_me():

class MyClass:
 _tell = {'tell_me'}
 _ask = {'ask_me'}
 def tell_me(self, msg):
 print(msg)
 def ask_me(self):
 return "hello back"

As you can see, the async method receives a message and simply prints it while
the sync method returns a result. More detailed examples can be found in the
‘pyactor/examples’ directory of the project. They are also explained below as a
tutorial for this library.

Sample 1 - Basic

This example shows and tests the most basic elements of PyActor. It creates
a Host and adds an actor to it. Then, queries an async method of this
actor. This is the full code of this sample, which you can find and test in
pyactor\examples\sample1.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	"""
Basic host creation sample.
"""
from pyactor.context import set_context, create_host, sleep, shutdown

class Echo(object):
 _tell = {'echo'}

 def echo(self, msg):
 print(msg)

if __name__ == '__main__':
 set_context()
 h = create_host()
 e1 = h.spawn('echo1', Echo)
 e1.echo("hello there !!")

 sleep(1)
 shutdown()

The example is similar to the one shown above in Global indications, but here we’ll
explain it more carefully.

In this case, we need to import the create_host() function from the
project in order to use it. We also import the sleep function, to give time to
the actor to work, and the setting function for the type, set_context().
Finally, we also need the shutdown() function to stop and clean the host
before finishing.

The actor to create in this example will be an Echo. This class only
has one method which prints the message msg, given by parameter. As you can
see, the classes destined to be actors must have the attributes _tell={...}
and _ask={...} that include the names of the methods that can be remotely
invoked in an asynchronous or synchronous way, respectively. In this sample we
have the echo method, which is async, as no response from it is needed.

Note

In this sample we do not have synchronous methods, so it is not
necessary to declare the _ask set. However, it could also be declared as
an empty ser _ask = set().

The first thing to do is define which model are we going to use. For now,
we are using the classic threads, so we’ll call the function without parameters
to use the default solution.

set_context()

To begin the execution we’ll need a Host to contain the actors. For
that, we create a new variable by using the function we imported before.

h = create_host()

Now we have a Host in the ‘h’ variable. Actually, as Host objects are
also actors, this call returns a Proxy that will manage that actor.
It can create actors attached to itself. To do that, we use the
spawn() method. The first parameter is a string with the ID of the
actor that will identify it among the host, so no repeated values are allowed.
The second is the class the actor will be instance of. In this case we create an
actor which will be an Echo and with the id ‘echo1’:

e1 = h.spawn('echo1', Echo)

‘e1’ will now represent that actor (actually, it’s a Proxy that manages
it).

As we have the actor, we can invoke its methods as we would do normally since
the proxy will redirect the queries to the actual placement of it. If we didn’t
have specified the methods in the statements appointed before (_tell and _ask),
we wouldn’t be able to do this now, giving a ‘no such attribute error’.
The execution should work properly and print on screen:

hello there !!

Then, the sleep gives time to the actor for doing the work and finally, we close
the host, which will stop all its actors. This function (shutdown())
should be always called at the end to do a clean exit:

shutdown()

Note

As the host is an actor itself, it has sync and async methods and can
receive remote queries if we use its proxy.

Note

As said, the host is also a living actor so it could receive queries
remotely in the future. This means you can send its reference to another
host, which allows to spawn remotely (remote spawns require a bit more info,
see the remote tutorial).

Note

Now you can try and see how it works with green threads by just
specifying ‘green_thread’ in the setting function.
set_context('green_thread')

Sample 2 - Sync

This example extends the content of the previous one by including sync requests.
It still creates a Host and adds an actor to it. This is the full
code of this sample, which you can find and test in
pyactor\examples\sample2.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

	"""
Sync/async queries sample.
"""
from pyactor.context import set_context, create_host, sleep, shutdown

class Echo(object):
 _tell = {'echo', 'bye'}
 _ask = {'say_something'}

 def echo(self, msg):
 print(msg)

 def bye(self):
 print("bye")

 def say_something(self):
 return "something"

if __name__ == '__main__':
 set_context()
 h = create_host()
 e1 = h.spawn('echo1', Echo)
 e1.echo("hello there !!")
 e1.bye()

 print(e1.say_something())

 sleep(1)
 shutdown()

Now Echo has two new methods, bye() and say_something().
The first one is async like the previous echo(), but the other one is
synchronous.

The invocation of ask methods is simply the same you would do normally.

The correct output for this sample is the following:

hello there !!
bye
something

Sample 3 - Timeout

This example tests the raising of timeouts. This is the full code of this
sample, which you can find and test in pyactor\examples\sample3.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

	"""
Timeout sample.
"""
from pyactor.context import set_context, create_host, sleep, shutdown
from pyactor.exceptions import PyActorTimeoutError

class Echo(object):
 _tell = {'echo', 'bye'}
 _ask = {'say_something'}

 def echo(self, msg):
 print(msg)

 def bye(self):
 print("bye")

 def say_something(self):
 sleep(2)
 return "something"

if __name__ == '__main__':
 set_context()
 h = create_host()
 e1 = h.spawn('echo1', Echo)
 e1.echo("hello there !!")
 e1.bye()

 try:
 x = e1.say_something(timeout=1)
 except PyActorTimeoutError:
 print("timeout caught")
 sleep(1)
 shutdown()

Now we have the same Echo class but in the sync method we added a sleep
of 2 seconds. Also, we surrounded the method call by a try structure
catching a PyActorTimeoutError exception from pyactor.exceptions. Since we
are giving an expire time of 1 second to the invocation, the timeout will be
reached and the exception raised.

You can set a timeout for the query of your choice. For that, add the
keyword parameter timeout=X in the call, in seconds.

x = e1.say_something(timeout=3)

The default timeout is 10 seconds. To wait indefinitely, just set it to None,
but that is not recommended.

The correct output for this sample is the following:

hello there !!
bye
timeout caught

Sample 4 - Lookup

This example shows the usage of the lookup methods applied to a host. This is
the full code of this sample, which you can find and test in
pyactor\examples\sample4.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

	"""
Lookup sample.
"""
from pyactor.context import set_context, create_host, sleep, shutdown

class Echo(object):
 _tell = {'echo', 'bye'}
 _ask = {'say_something'}

 def echo(self, msg):
 print(msg)

 def bye(self):
 print("bye")

 def say_something(self):
 return "something"

if __name__ == '__main__':
 set_context()
 h = create_host()
 e1 = h.spawn('echo1', Echo)

 e = h.lookup('echo1')
 print(e.say_something())

 ee = h.lookup_url("local://local:6666/echo1", Echo)
 print(ee.say_something())

 sleep(1)
 shutdown()

We have two ways to get the reference of one already existing actor of a host.
If it is local, of the same host, it is fine to use the method lookup()
giving by parameter only the id of the actor you wish:

e = h.lookup('echo1')

If you are working remotely, you could need lookup_url() to get the
reference. In this example, it is used also to get a local reference giving the
standard local URL at which the host is initialized by default:

ee = h.lookup_url('local://local:6666/echo1')

Note

Please follow the remote tutorial to get a better overview of the
programming with remote hosts. This tutorial focuses on local hosts.

Sample 5 - References to actors

This example tests the sending of proxy references by parameter using the
definition of the _ref set. This is the full code of this sample, which you can
find and test in pyactor\examples\sample5.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

	"""
Proxy references by parameter sample.
"""
from pyactor.context import set_context, create_host, sleep, shutdown

class Echo(object):
 _tell = {'echo', 'echo2', 'echo3'}
 _ref = {'echo', 'echo2', 'echo3'}

 def echo(self, msg, sender):
 print(f"{msg} from: {sender.get_name()}")

 def echo2(self, msg, senders):
 for sender in senders:
 print(f"{msg} from: {sender.get_name()}")

 def echo3(self, msg, senders):
 for sender in senders.values():
 print(f"{msg} from: {sender.get_name()}")

class Bot(object):
 _ask = {'get_name'}

 def get_name(self):
 return self.id

if __name__ == '__main__':
 set_context()
 h = create_host()
 e1 = h.spawn('echo1', Echo)
 bot = h.spawn('bot1', Bot)
 bot2 = h.spawn('bot2', Bot)
 sleep(1)
 e1.echo("HI!", bot)
 e1.echo2("hello there!", [bot2])
 e1.echo3("hello there!!", {'bot1': bot, 'bot2': bot2})

 sleep(1)
 shutdown()

If you pass references to actors (proxies) by parameter in actors methods, would
mean they are sharing the same instance of a proxy. This could cause various
concurrency problems, so we might want different proxies in different spots.
To achieve that, you have to indicate that a method receives or returns a
proxy by adding it to the class’ _ref set (it still must be in _ask or _tell).

With this indication, PyActor will search for proxies in the parameters and make
a new proxy for the actor in the context that the method will be executed.

In the example, Echo has methods that receive a proxy, in this methods
you can see examples of passing proxies even inside lists or dictionaries.
For that to work correctly on any system, Echo needs to define its methods
as they have this functionality. This is why all three methods are in the _ref
set

_ref = {'echo', 'echo2', 'echo3'}

Although the proxies are different, you may yet compare them directly so when
using p1 == p2 on two proxies, the comparison will be done on the actors
that they represent and not on the proxy instance itself.
See the basic examples on proxies_test.py.

Sample 6 - self.id, proxy and host

This example tests the self references to an actor’s id and proxy. This is the
full code of this sample, which you can find and test in
pyactor\examples\sample6.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

	"""
Self references sample. Actor id/proxy. + serve_forever
"""
from pyactor.context import set_context, create_host, sleep, serve_forever

class Echo(object):
 _tell = {'echo'}
 _ref = {'echo'}

 def echo(self, msg, sender):
 print(f"{msg} from: {sender.get_name()} at {sender.get_net()}")
 # print(sender.get_id(), sender.get_url())

class Bot(object):
 _tell = {'set_echo', 'say_hi'}
 _ask = {'get_name', 'get_net'}

 def __init__(self):
 self.greetings = ["hello", "hi", "hey", "what's up?"]

 def set_echo(self):
 self.echo = self.host.lookup('echo1')

 def get_name(self):
 return self.id

 def get_net(self):
 return self.url

 def say_hi(self):
 for salute in self.greetings:
 self.echo.echo(salute, self.proxy)

if __name__ == '__main__':
 set_context()
 h = create_host()
 e1 = h.spawn('echo1', Echo)
 bot = h.spawn('bot1', Bot)
 bot.set_echo()
 bot.say_hi()

 sleep(1)
 serve_forever()

This sample demonstrates how to get references to an actor from the actor
itself. With self.id we obtain the string that identifies the actor in the
host it is located, self.url contains its network location. Then, with
self.proxy you can get a reference to a proxy managing the actor so you can
give it to another function, class or module in a safe and easy way.

Note

Remember to put methods that receive or return proxies in the _ref set.

It is also possible to use self.host, which will give a proxy to the host in
which the actor is, so you can lookup() other actors from there, among
other possibilities.

In the example, we use these three calls to send various salutations from a
Bot to an Echo giving by parameter also a proxy from the Bot
so the Echo can call one of the Bot’s methods to get its id. Also, the
set_echo() method, in this case, does not receive the Echo by parameter.
It uses the inside reference it already has to call a lookup() to the
host and get the wanted reference.

Also notice that every proxy has the methods get_id and get_url already
defined, so you can get the actor’s information directly from the proxy. This
means we could use sender.get_id() instead of sender.get_name(); and
sender.get_url() instead of sender.get_net() on the echo method.

The correct output for this sample is the following:

hello from: bot1
hi from: bot1
hey from: bot1
what`s up? from: bot1
Press Ctrl+C to kill the execution

In this sample, we also see the usage of the serve_forever() function
which is very useful in remote communication in order to keep a host alive as
another one sends queries to its actors. The usage is very simple, instead of
shutting the host down at the end, we call:

serve_forever()

This will maintain the host alive in lower process consumption until the user
presses Ctrl+C allowing other hosts to lookup and call methods from actors
in this host.

Sample 7 - References extended

This example extends sample 5. This is the full code of this sample, which you
can find and test in pyactor\examples\sample7.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

	"""
Proxy references by parameter sample.
"""
from pyactor.context import set_context, create_host, sleep, shutdown

class Echo(object):
 _tell = {'echo', 'echo2', 'echo3'}
 _ref = {'echo', 'echo2', 'echo3'}

 def echo(self, msg, sender):
 print(f"{msg} from: {sender.get_name()}")

 def echo2(self, msg, senders):
 for sender in senders:
 print(f"{msg} from: {sender.get_name()}")

 def echo3(self, msg, senders):
 for sender in senders.values():
 print(f"{msg} from: {sender.get_name()}")

class Bot(object):
 _tell = {'set_echo', 'say_hi'}
 _ask = {'get_name'}
 _ref = {'set_echo'}

 def __init__(self):
 self.greetings = ["hello", "hi", "hey", "what's up?"]

 def set_echo(self, echo):
 self.echo = echo

 def get_name(self):
 return self.id

 def say_hi(self):
 for salute in self.greetings:
 self.echo.echo(salute, self.proxy)

if __name__ == '__main__':
 set_context()
 h = create_host()
 e1 = h.spawn('echo1', Echo)
 bot = h.spawn('bot1', Bot)
 bot2 = h.spawn('bot2', Bot)
 bot.set_echo(e1) # Passing a proxy to a method marked as _ref
 sleep(1) # Give time to host to lookup the first one
 bot2.set_echo(e1)
 bot.say_hi()
 sleep(1)
 e1.echo2("hello there!", [bot2])
 e1.echo3("hello there!!", {'bot1': bot, 'bot2': bot2})

 sleep(1)
 shutdown()

To remark the importance of using the _ref set, we extend here sample 5 with
more examples of passing proxies combined with the self references we saw in
sample 6.

Bot has a method set_echo that gets the echo it will use by parameter. As
this echo has to be a proxy, Bot includes the next definition:

_ref = {'set_echo'}

So then, at the main code, we can make this call without any concurrency
problems, as the proxies are not shared:

bot.set_echo(e1)

As already seen in sample 5, Echo has methods that receive a proxy.
Including examples of passing proxies even inside lists or dictionaries.

Sample 8 - Futures

This example tests more deeply the features of futures. This is the full
code of this sample, which you can find and test in
pyactor\examples\sample8.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

	"""
Futures Sample.
@author: Daniel Barcelona Pons
"""
from pyactor.context import set_context, create_host, sleep, shutdown

class Echo(object):
 _tell = {'echo'}
 _ask = {'say_something', 'raise_something'}

 def echo(self, msg):
 print(msg)

 def say_something(self):
 return "something"

 def raise_something(self):
 raise Exception("raising something")

if __name__ == '__main__':
 set_context()
 # set_context('green_thread')
 h = create_host()
 e1 = h.spawn('echo1', Echo)
 e1.echo("hello there !!")

 # ask = e1.raise_something(future=True)
 ask = e1.say_something(future=True)
 print(f"Future: {ask}")
 sleep(0.1)
 if ask.done():
 print(f"Exception: {ask.exception()}")
 try:
 print(f"Result: {ask.result(1)}")
 except Exception as e:
 print(e)

 sleep(1)
 shutdown()

The example is like Sample 3, but here we use the futures approach.

We do this by adding the parameter future=True to the call. This will make
the query return a Future instance instead of the result. That means
that the execution of the query may have not been completed yet. To get the
result from a Future, use the method result() as you can see in the
try section.

Also shows the usage of the consulting methods of futures: done(),
and exception().

Change between this lines:

ask = e1.raise_something(future=True)
ask = e1.say_something(future=True)

to check the raising of exceptions.

Finally, note that the only argument for result() (also for
exception()) is the timeout: the time, in seconds, to wait for a result
before raising an error.

Sample 9 - Callback

This example tries the functionality of the callback element of the synchronous
queries. This is the full code of this sample, which you can find and test in
pyactor\examples\sample9.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

	"""
Callback sample.
"""
from pyactor.context import set_context, create_host, sleep, shutdown

class Echo(object):
 _tell = {'echo', 'bye'}
 _ask = {'say_something'}

 def echo(self, msg):
 print(msg)

 def bye(self):
 print("bye")

 def say_something(self):
 sleep(1)
 return "something"

class Bot(object):
 _tell = {'set_echo', 'ping', 'pong'}
 _ref = {'set_echo'}

 def set_echo(self, echo):
 self.echo = echo

 def ping(self):
 future = self.echo.say_something(future=True)
 future.add_callback('pong')
 future.add_callback('pong')
 print("pinging...")

 def pong(self, future):
 msg = future.result()
 print("callback", msg)

if __name__ == '__main__':
 set_context()
 h = create_host()
 e1 = h.spawn('echo1', Echo)
 bot = h.spawn('bot', Bot)
 bot.set_echo(e1)
 bot.ping()

 sleep(2)
 shutdown()

This time we keep having the same initialization as before, but now there is
a new class. Bot has three async methods that will allow to prove the
callback functionality. set_echo() registers an
Echo to the Bot so it can call it. \(ping\) creates the query for
the say_something() method and sets the callback for this to his other
method pong(). This second will receive the result of the execution of the
say_something() method.

Remember, set_echo() needs to be listed in the Bot class’ _ref
set.

In order to add a callback, the sync call must be defined as a Future. We do
this by adding the parameter future=True to the call.

Then, use the Future method add_callback() which takes by
parameter the name of the method to callback, which is one from the actor that
calls it. You can add various callbacks to one future, and they will be called
in order when the work is finished. Also, if you add a callback to a finished
future, it will be directly invoked.

See Sample 8 - Futures for a more complex sample on Futures.

Note

add_callback() needs to be called from inside an actor,
specifying a method of that same actor.

Note

The method treated as a callback must have one unique parameter, which
is the future. Inside the method you can use result() to get the
result of the call (exceptions can be raised) or exception() to get
the instance of a possible raised exception. You can also check the state of
the future with one of its methods: done() or running().

The correct output for this sample is the following:

pinging...
callback something
callback something

Sample 10 - Parallel

This example tests the creation and execution of actors with parallel methods.
This is the full code of this sample, which you can find and test in
pyactor\examples\sample10.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

	"""
Parallel methods sample.
"""
from pyactor.context import set_context, create_host, sleep, shutdown
from pyactor.exceptions import PyActorTimeoutError

class File(object):
 _ask = {'download'}

 def download(self, filename):
 print(f"downloading {filename}")
 sleep(5)
 return True

class Web(object):
 _ask = {'list_files', 'get_file'}
 _tell = {'remote_server'}
 _parallel = {'list_files', 'get_file', 'remote_server'}
 # Comment the line above to check the raise of timeouts if parallels
 # are not used.
 _ref = {'remote_server'}

 def __init__(self):
 self.files = ["a1.txt", "a2.txt", "a3.txt", "a4.zip"]

 def remote_server(self, file_server):
 self.server = file_server

 def list_files(self):
 return self.files

 def get_file(self, filename):
 return self.server.download(filename, timeout=6)

class Workload(object):
 _tell = {'launch', 'download', 'remote_server'}
 _ref = {'remote_server'}

 def launch(self):
 for i in range(10):
 try:
 print(self.server.list_files(timeout=2))
 except PyActorTimeoutError as e:
 print(i, e)

 def remote_server(self, web_server):
 self.server = web_server

 def download(self):
 self.server.get_file('a1.txt', timeout=10)
 print("download finished")

if __name__ == '__main__':
 set_context('green_thread')
 # set_context()

 host = create_host()

 f1 = host.spawn('file1', File)
 web = host.spawn('web1', Web)
 sleep(1)
 web.remote_server(f1)
 load = host.spawn('wl1', Workload)
 load.remote_server(web)
 load2 = host.spawn('wl2', Workload)
 load2.remote_server(web)

 load.launch()
 load2.download()

 sleep(7)
 shutdown()

Parallels are a way of letting one actor process many queries at a time.
This will allow the actor to keep receiving calls when another call has been
blocked with another job (an I/O call or a synchronous call to another actor).

To make one method execute parallel, you need to specify it in the class
attribute _parallel, which is a set. The method must also be in one of the
sets _tell or _ask. The methods with this tag will be executed in new threads
so their execution do not interfere with receiving other queries. That is, the
actor can attend other queries while executing the parallel method.

As you could think, executing methods of the same actor at the same time can
compromise the integrity of data. PyActor ensures that only one thread is
executing on an actor at the same time, allowing other threads to execute when
the one executing is blocked with some call. This prevents two threads from
accessing the same data at a time, but is up to the programmer to prevent the
data to change during the execution of a method if that is not intended, as a
method could modify a property of the actor while a parallel, that operates with
that data, is blocked, leading to an inconsistency.

In this example we have three classes: File, Web and Workload. File represents a
server that serves the download of files. Simulates the work with a sleep.
Web represents a web server which contains a list of files. It must have a
file server that provides the files and can list its files (list_files) and
return one of them (get_file). Workload is the class that will do the work. It
asks the web to list its files ten times, or requests to download one of the
files.

The execution is simple, we create one file server, one web server and attach
the file server to the web:

web.remote_server(f1)

Then let’s do the work. Create two Workload instances and pass to them the web
server we created:

load = host.spawn('wl1', Workload)
load.remote_server(web)
load2 = host.spawn('wl2', Workload)
load2.remote_server(web)

The first worker will make the ten queries to list_files, while the second one
will download a file:

load.launch()
load2.download()

As the method get_file is marked as parallel, its execution will be done in
another thread, so when the method blocks downloading (in the sleep), it will
free the actor so it can keep serving answers to the first load.

If we do not use parallels in this example (which you can try by commenting the
right line as indicated) some of the calls to the list_files method will raise
TimeoutError as that actor’s thread is blocked with the download.

Note

sample10b combines this example with the use of Futures.

Note

You can test another parallel example with parall.py. That might
result simpler to follow.

Sample 11 - Intervals

This example tests the usage of intervals that allow an actor to periodically do
an action. This is the full code of this sample, which you can find and test in
pyactor\examples\sample11.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

	"""
Intervals sample
@author: Daniel Barcelona Pons
"""
from pyactor.context import set_context, create_host, sleep, shutdown, \
 interval, later

class Registry(object):
 _tell = {'hello', 'init_start', 'stop_interval'}
 # _ref = {'hello'}

 def init_start(self):
 self.interval1 = interval(self.host, 1, self.proxy, "hello", "you", "too")
 later(5, self.proxy, "stop_interval")

 def stop_interval(self):
 print("stopping interval")
 self.interval1.set()

 def hello(self, msg, m2):
 print(f"{self.id} Hello {msg} {m2}")

if __name__ == '__main__':
 N = 2 # 10000

 set_context()
 host = create_host()
 registry = list()
 for i in range(0, N):
 registry.append(host.spawn(str(i), Registry))

 for i in range(0, N):
 registry[i].init_start()

 sleep(8)
 shutdown()

To generate intervals, we use the functions context.interval() and
context.later() that can be imported if needed. The
class (actor) will call the first one giving firstly the proxy of the host that
will manage the interval, accessible from within the actor by self.host; next,
the interval time and the proxy to the actor to which make the periodic call
(that can be itself with self.proxy or another actor) as
well as the name of the method in that actor that will be called.
The method to be executed must be a tell method (with ref or without it),
otherwise, it will raise and exception.

This function returns an interval instance that we have to keep in order to
stop it later by calling .set().

In this example we use context.later() to set a timer that will stop the
interval after a certain time. This method works similar to the other. You
specify by parameter the actor and the method to be executed after that time,
and only accepts methods of the tell type.

If the method requires arguments, those can be passed in the same call. In the
example, hello needs one argument and it is passed as:

self.host.interval(1, self.proxy, "hello", "you")

If the method needed two of them, it would be like follows:

self.host.interval(1, self.proxy, "hello", "you", "too")

Sample 1b - Stopping an Actor (Advanced)

This example is like the first one, but extended with a new functionality for
the hosts. This shows how to stop an actor and delete all its references from
one host. This is the full code of this sample, which you can find and test in
pyactor\examples\sample1b.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	"""
Stopping an actor.
"""
from pyactor.context import set_context, create_host, sleep, shutdown

class Echo(object):
 _tell = {'echo'}

 def echo(self, msg):
 print(msg)

if __name__ == '__main__':
 set_context()
 h = create_host()
 e1 = h.spawn('echo1', Echo)
 e1.echo("hello there !!")

 sleep(1)
 h.stop_actor('echo1')

 e1 = h.spawn('echo1', Echo)
 e1.echo("hello there !!")

 sleep(1)
 shutdown()

You can always delete an actor by calling the method stop_actor() of its
host. This function will stop the thread of that actor and all its references
from the host. This means the actor cannot be looked up anymore, it will not
receive any more work and you can create a new actor with its same id.

Note

Parallel queries already submitted will end as usual.

Note

Intervals involving that actor’s methods might result in errors.

Remote Tutorial

This page explains hot to use PyActor for remote communications between
machines.

Sample 1 - Basic communication

This example shows the basis on setting a remote communication and sending tell
requests. This is the full code of this sample, which you can find and test in
pyactor\examples\Remote\s1_server.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	"""
Basic remote example sending tell messages. SERVER
@author: Daniel Barcelona Pons
"""
from pyactor.context import set_context, create_host, serve_forever

class Echo(object):
 _tell = {'echo'}

 def echo(self, msg):
 print(msg)

if __name__ == '__main__':
 set_context()
 host = create_host("http://127.0.0.1:1277/")

 e1 = host.spawn('echo1', Echo)
 serve_forever()

And pyactor\examples\Remote\s1_client.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	"""
Basic remote example sending tell messages. CLIENT
@author: Daniel Barcelona Pons
"""
from pyactor.context import set_context, create_host, shutdown

if __name__ == '__main__':
 set_context()
 host = create_host("http://127.0.0.1:1679")

 e1 = host.lookup_url("http://127.0.0.1:1277/echo1", 'Echo', 's1_server')

 e1.echo("Hi there!") # TELL message
 e1.echo("See ya!")

 shutdown()

To create a host able to communicate with other machines, simply use as its URL
one with an http scheme, as in the example. Using the http scheme will create
a dispatcher on that host that will manage the queries through xml.

So, the server spawns an actor at 127.0.0.1:1277 and the client is able to
look for that actor just giving that IP:port and path. If the client does not
have the Class it is looking for, it must provide the module and the name of
that class when calling the lookup method as shown.

Then, the calls are used as usual.

In s1_clientb.py we have the same code but the calls are repeated 1000
times.

Sample 2 - Basic communication 2

This example extends the first by adding ask requests. This is the full code of
this sample, which you can find and test in
pyactor\examples\Remote\s2_server.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

	"""
Basic remote example sending ask messages. SERVER
@author: Daniel Barcelona Pons
"""
from pyactor.context import set_context, create_host, serve_forever

class Echo(object):
 _tell = {'echo'}
 _ask = {'get_msgs'}

 def __init__(self):
 self.msgs = []

 def echo(self, msg):
 print(msg)
 self.msgs.append(msg)

 def get_msgs(self):
 return self.msgs

if __name__ == '__main__':
 set_context()
 host = create_host("http://127.0.0.1:1277/")

 e1 = host.spawn('echo1', Echo)
 serve_forever()

And pyactor\examples\Remote\s2_client.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	"""
Basic remote example sending ask messages. CLIENT
@author: Daniel Barcelona Pons
"""
from pyactor.context import set_context, create_host, shutdown

if __name__ == '__main__':
 set_context()
 host = create_host("http://127.0.0.1:1679")

 e1 = host.lookup_url("http://127.0.0.1:1277/echo1", 'Echo', 's2_server')

 e1.echo('Hi there!') # TELL message
 e1.echo('See ya!')

 print(e1.get_msgs())

 shutdown()

This sample is like the previous one, but it includes examples of ask methods.
As the tell methods, they are used as normally, like in the local examples.

Sample 3 - Remote spawning

This example shows how to spawn an actor in another host. This is the full
code of this sample, which you can find and test in
pyactor\examples\Remote\s3_host.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	"""
Remote example spawning on a remote server. SERVER
@author: Daniel Barcelona Pons
"""
from pyactor.context import set_context, create_host, serve_forever

if __name__ == '__main__':
 set_context()
 host = create_host("http://127.0.0.1:1277/")

 print("host listening at port 1277")

 serve_forever()

And pyactor\examples\Remote\s3_client.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

	"""
Remote example spawning on a remote server. CLIENT
@author: Daniel Barcelona Pons
"""
from pyactor.context import set_context, create_host, Host, sleep, shutdown
from pyactor.exceptions import PyActorTimeoutError

class Server(object):
 _ask = {'add', 'wait_a_lot'}
 _tell = {'substract'}

 def add(self, x, y):
 return x + y

 def substract(self, x, y):
 print("subtract", x - y)

 def wait_a_lot(self):
 sleep(2)
 return "ok"

if __name__ == '__main__':
 set_context()
 host = create_host("http://127.0.0.1:1679")

 remote_host = host.lookup_url("http://127.0.0.1:1277/", Host)
 print(remote_host)
 server = remote_host.spawn('server', 's3_client/Server')
 z = server.add(6, 7)
 print(z)
 server.subtract(6, 5)
 t = server.add(8, 7)
 print(t)

 try:
 print(server.wait_a_lot(timeout=1))
 except PyActorTimeoutError as e:
 print(e)

 sleep(3)
 shutdown()

In this case the server part only creates its host and makes it serve forever
(serve_forever()). The client is the one that uses lookup_url()
to get the server reference and spawn an actor in it. Then, sends the work to
the actor. To spawn the actor, as the class of it is defined in the client
module, the method uses a string to define where is the Class so the server
can import it. This string uses the form module/class_name:

server = remote_host.spawn('server', 's3_client/Server')

Sample 4 - Registry example

Here we have a basic example of a registry where some servers can bind to so the
clients are able to see all the servers available and connect to one. This is
the full code of this sample, which you can find and test in
pyactor\examples\Remote\s4_registry.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

	"""
Remote example with a registry. SERVER
@author: Daniel Barcelona Pons
"""
from pyactor.context import set_context, create_host, serve_forever

class NotFound(Exception):
 pass

class Registry(object):
 _ask = {'get_all', 'bind', 'lookup', 'unbind'}
 _ref = {'get_all', 'bind', 'lookup'}

 def __init__(self):
 self.actors = {}

 def bind(self, name, actor):
 print("server registred", name)
 self.actors[name] = actor

 def unbind(self, name):
 if name in self.actors.keys():
 del self.actors[name]
 else:
 raise NotFound()

 def lookup(self, name):
 if name in self.actors:
 return self.actors[name]
 else:
 return None

 def get_all(self):
 return self.actors.values()

if __name__ == '__main__':
 set_context()
 host = create_host("http://127.0.0.1:6000/")

 registry = host.spawn('regis', Registry)

 print("host listening at port 6000")

 serve_forever()

And pyactor\examples\Remote\s4_client.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	"""
Remote example with registry. CLIENT
@author: Daniel Barcelona Pons
"""
from pyactor.context import set_context, create_host, serve_forever

if __name__ == '__main__':
 set_context()
 host = create_host("http://127.0.0.1:6001")

 registry = host.lookup_url("http://127.0.0.1:6000/regis", 'Registry',
 's4_registry')

 registry.bind('host1', host)

 serve_forever()

And pyactor\examples\Remote\s4_clientb.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

	"""
Remote example with registry. CLIENT 2
@author: Daniel Barcelona Pons
"""
from pyactor.context import set_context, create_host, sleep, shutdown

from s4_registry import NotFound

class Server(object):
 _ask = {'add', 'wait_a_lot'}
 _tell = {'subtract'}

 def add(self, x, y):
 return x + y

 def subtract(self, x, y):
 print("subtract", x - y)

 def wait_a_lot(self):
 sleep(2)
 return "ok"

if __name__ == '__main__':
 set_context()
 host = create_host("http://127.0.0.1:6002")

 registry = host.lookup_url("http://127.0.0.1:6000/regis", 'Registry',
 's4_registry')
 remote_host = registry.lookup('host1')
 if remote_host is not None:
 if not remote_host.has_actor('server'):
 server = remote_host.spawn('server', 's4_clientb/Server')
 else:
 server = remote_host.lookup('server')
 z = server.add(6, 7)
 print(z)
 server.subtract(6, 5)
 t = server.add(8, 7)
 print(t)

 try:
 registry.unbind('None')
 except NotFound:
 print("Cannot unbind this object: is not in the registry.")

 shutdown()

In this example we have a registry where Servers can be bound. The registry
module starts an actor which is the registry itself to which servers can be
bound and clients look for servers. The first client binds its host to the
registry and waits. The second one uses the registry to find the first’s host
and spawn a server on it. Then, send work to that server.

In order to execute the second client repeatedly without having to restart
all the processes, before spawning the server remotely, it checks if the first
client has already the server by using the method has_actor on the
remote_host.

Sample 5 - Multiple Hosts

This example tests the creation of multiple host at the same time on one unique
execution. This is the full code of this sample, which you can find and test in
pyactor\examples\Remote\sample5.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

	"""
Multiple hosts. Remote required since v0.9.
@author: Daniel Barcelona Pons
"""
from pyactor.context import set_context, create_host, sleep, shutdown

class Echo(object):
 _tell = {'echo'}
 _ref = {'echo'}

 def echo(self, msg, pref=None):
 print(msg, pref)

if __name__ == '__main__':
 set_context()
 h = create_host("http://127.0.0.1:6666/host")
 e1 = h.spawn('echo1', Echo)
 e1.echo("hello there !!", e1)

 h2 = create_host("http://127.0.0.1:7777/host")
 e2 = h2.spawn('echo1', Echo)
 e2.echo("hello 2", e1)

 sleep(1)

 e1.echo("hello 3", e2)

 sleep(1)
 shutdown()
 # or, to only stop one of them:
 # shutdown("http://127.0.0.1:7777/host")

The first thing to make clear is that you should never need to create more than
one host locally, since they are meant for remote communication. This is for
testing purposes.

To create more hosts, you only need to call again the function
create_host(). But you will need to specify different locations for
each host, since those are their identifiers. In the example we create two
hosts in the same location, but attending different ports:

h = create_host("http://127.0.0.1:6666/host")
h2 = create_host("http://127.0.0.1:7777/host")

Note

Remember that the default address for a host is
local://local:6666/host

Note

To communicate two hosts, both of them must have a remote dispatcher,
so they must have one of the schemes required.

Now, each host will manage its own actors and threads, so they will need to
communicate through TCP connections.

One thing important to know about this is that only one host can be used to
manage the main execution of your program, so there always will be a main host
and the other ones will be created as secondary hosts.

This main host will be automatically assigned to the first one created. If that
one is closed and there still are other hosts operative, the oldest of them will
assume the role of main host.

Using RabbitMQ

Unmaintained Only works on a single machine with multiple hosts and needs
the rabbit server running locally.

This library also supports the usage of communication through RabbitMQ queues.
To use this approach, simply define the hosts with an URL with the scheme
amqp instead of http. This will create a dispatcher for that host that works
with RabbitMQ, and all its actors will work at that scheme.

You can see an example with pyactor\examples\Remote\s1_clientrbb.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	"""
Basic remote example sending tell messages. CLIENT
@author: Daniel Barcelona Pons
"""
from pyactor.context import \
 set_context, create_host, set_rabbit_credentials, shutdown

if __name__ == '__main__':
 set_rabbit_credentials('daniel', 'passs')
 set_context()
 host = create_host("amqp://127.0.0.1:1679")

 e1 = host.lookup_url("amqp://127.0.0.1:1277/echo1", 'Echo', 's1_server')

 e1.echo("Hi there!") # TELL message
 e1.echo("See ya!")

 shutdown()

and pyactor\examples\Remote\s1_serverrbb.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	"""
Basic remote example sending tell messages. SERVER
@author: Daniel Barcelona Pons
"""
from pyactor.context import \
 set_context, create_host, set_rabbit_credentials, serve_forever

class Echo(object):
 _tell = {'echo'}

 def echo(self, msg):
 print(msg)

if __name__ == '__main__':
 # set_rabbit_credentials('daniel', 'passs')
 set_context()
 host = create_host("amqp://127.0.0.1:1277/")

 e1 = host.spawn('echo1', Echo)
 serve_forever()

You can configure your rabbit credentials with:

setRabbitCredentials('user', 'password')

If you don’t, it will use the default Rabbit guest user, which only can connect
locally.

Main Code

PyActor: Python Actor library

Context

See source

	
class pyactor.context.Host(url)

	Host must be created using the function create_host().
Do not create a Host directly.

Host is a container for actors. It manages the spawn and
elimination of actors and their communication through channels. Also
configures the remote points where the actors will be able to receive
and send queries remotely. Additionally, controls the correct management
of its actors’ threads and intervals.

The host is managed as an actor itself so you interact with it through
its Proxy. This allows you to pass it to another host to
spawn remotely.

	Parameters

	url (str.) – URL that identifies the host and where to find it.

	
attach_interval(interval_id, interval_event)

	Registers an interval event to the host.

	
detach_interval(interval_id)

	Deletes an interval event from the host registry.

	
dumps(param)

	Checks the parameters generating new proxy instances to avoid
query concurrences from shared proxies and creating proxies for
actors from another host.

	
has_actor(aid)

	Checks if the given id is used in the host by some actor.

	Parameters

	aid (str.) – identifier of the actor to check.

	Returns

	True if the id is used within the host.

	
loads(param)

	Checks the return parameters generating new proxy instances to
avoid query concurrences from shared proxies and creating
proxies for actors from another host.

	
lookup(aid)

	Gets a new proxy that references to the actor of this host
(only actors in this host) identified by the given ID.

This method can be called remotely synchronously.

	Parameters

	aid (str.) – identifier of the actor you want.

	Returns

	Proxy to the actor required.

	Raises

	NotFoundError if the actor does not exist.

	Raises

	HostDownError if the host is down.

	
lookup_url(url, klass, module=None)

	Gets a proxy reference to the actor indicated by the URL in the
parameters. It can be a local reference or a remote direction to
another host.

This method can be called remotely synchronously.

	Parameters

	
	url (srt.) – address that identifies an actor.

	klass (class) – the class of the actor.

	module (srt.) – if the actor class is not in the calling module,
you need to specify the module where it is here. Also, the klass
parameter change to be a string.

	Returns

	Proxy of the actor requested.

	Raises

	NotFoundError, if the URL specified do not
correspond to any actor in the host.

	Raises

	HostDownError if the host is down.

	Raises

	HostError if there is an error looking for
the actor in another server.

	
new_parallel(a_function, *params)

	Register a new thread executing a parallel method.

	
spawn(aid, klass, *param, **kparam)

	This method creates an actor attached to this host. It will be
an instance of the class klass and it will be assigned an ID
that identifies it among the host.

This method can be called remotely synchronously.

	Parameters

	
	aid (str.) – identifier for the spawning actor. Unique within
the host.

	klass (class) – class type of the spawning actor. If you are
spawning remotely and the class is not in the server module,
you must specify here the path to that class in the form
‘module.py/Class’ so the server can import the class and create
the instance.

	param – arguments for the init function of the
spawning actor class.

	kparam – arguments for the init function of the
spawning actor class.

	Returns

	Proxy to the spawned actor.

	Raises

	AlreadyExistsError, if the ID specified is
already in use.

	Raises

	HostDownError if the host is not initiated.

	
stop_actor(aid)

	This method removes one actor from the Host, stopping it and deleting
all its references.

	Parameters

	aid (str.) – identifier of the actor you want to stop.

	
pyactor.context.create_host(url='local://local:6666/host')

	This is the main function to create a new Host to which you can
spawn actors. It will be set by default at local address if no
parameter url is given. This function should be called once
for execution or after calling shutdown() to the previous
host.

However, it is possible to create locally more than one host
and simulate a remote communication between them if they are of some
remote type (http or amqp), but the first one created will
be the main host, which is the one hosting the queries from
the main function.
Of course, every host must be initialized with a different URL(port).
Although that, more than one host should not be required for any real
project.

	Parameters

	url (str.) – URL where to start and bind the host.

	Returns

	Proxy to the new host created.

	Raises

	Exception if there is a host already created with that URL.

	
pyactor.context.interval(host, time, actor, method, *args, **kwargs)

	Creates an Event attached to the host for management that will
execute the method of the actor every time seconds.

See example in Sample 11 - Intervals

	Return type

	

	Parameters

	
	host (Proxy) – host that will manage the interval, commonly the
host of the actor.

	time (float) – seconds for the intervals.

	actor (Proxy) – actor to which make the call every time seconds.

	method (Str.) – method of the actor to be called.

	args (list) – arguments for method.

	Returns

	Event instance of the interval.

	
pyactor.context.later(timeout, actor, method, *args, **kwargs)

	Sets a timer that will call the method of the actor past timeout
seconds.

See example in Sample 11 - Intervals

	Parameters

	
	timeout (int) – seconds until the method is called.

	actor (Proxy) – actor to which make the call after time seconds.

	method (Str.) – method of the actor to be called.

	args (list) – arguments for method.

	Returns

	manager of the later (Timer in thread,
Greenlet in green_thread)

	
pyactor.context.serve_forever()

	This allows the host (main host) to keep alive indefinitely so its actors
can receive queries at any time.
The main thread stays blocked forever.
To kill the execution, press Ctrl+C.

See usage example in Sample 6 - self.id, proxy and host.

	
pyactor.context.set_context(module_name='thread')

	This function initializes the execution context deciding which
type of threads are being used: classic python threads or green
threads, provided by Gevent.

This should be called first of all in every execution, otherwise,
the library would not work.

The default module is ‘thread’.

	Parameters

	module_name (str.) – Name of the module you want to use
(‘thread’ or ‘green_thread’).

	
pyactor.context.set_rabbit_credentials(user, password)

	If you use a RabbitMQ server and want to make remote queries, you might
need to specify new credentials for connection.

By default, PyActor uses the guest RabbitMQ user.

	Parameters

	
	user (str.) – Name for the RabbitMQ user.

	password (str.) – Password for the RabbitMQ user.

	
pyactor.context.shutdown(url=None)

	Stops the Host passed by parameter or all of them if none is
specified, stopping at the same time all its actors.
Should be called at the end of its usage, to finish correctly
all the connections and threads.

	
pyactor.context.sleep(seconds)

	Facade for the sleep function. Do not use time.sleep if you are
running green threads.

Proxy

See source

	
class pyactor.proxy.AskRefWrapper(channel, method, actor_url)

	Wrapper for Ask queries that have a proxy in parameters or returns.

	
class pyactor.proxy.AskWrapper(channel, method, actor_url)

	Wrapper for Ask type queries to the proxy. Calling it blocks the
execution until the result is returned or timeout is reached. You
can add the tagged parameter “timeout” to change the time limit to
wait. Default timeout is set to 10s. It is also possible to specify
“future=True” to get an instant response with a Future
object with which you can manage the result.

	Parameters

	
	channel (Channel) – communication way for the query.

	method (str.) – name of the method this query is gonna invoke.

	actor_url (str.) – URL address where the actor is set.

	
class pyactor.proxy.Proxy(actor)

	Proxy is the class that supports to create a remote reference to an
actor and invoke its methods. All the references to actors will be
proxies, even the host.
To get a proxy to an Actor, you should use one of the host functions
that provide one, like spawn() or lookup_url().

	Parameters

	actor (Actor) – the actor the proxy will manage.

	
get_id()

	
	Returns

	the id of the actor that this proxy holds.

	Raises

	Exception if the proxy holds a remote actor. Use URL.

	
get_url()

	
	Returns

	the URL of the actor that this proxy holds.

	
class pyactor.proxy.TellRefWrapper(channel, method, actor_url)

	Wrapper for Tell queries that have a proxy in parameters.

	
class pyactor.proxy.TellWrapper(channel, method, actor_url)

	Wrapper for Tell type queries to the proxy. Creates the request and
sends it through the channel.

	Parameters

	
	channel (Channel) – communication way for the query.

	method (str.) – name of the method this query is going to invoke.

	actor_url (str.) – URL address where the actor is set.

Util

	Defined constants:

	FROM, TO, TYPE, METHOD, PARAMS, FUTURE, ASK, TELL, SRC,
CHANNEL, CALLBACK, ASK_RESPONSE, FUTURE_RESPONSE, RESULT, RPC_ID

Remote Solutions

	
class pyactor.rpcserver.RequestHandler(request, client_address, server)

	

	
class pyactor.rpcserver.Sink(url)

	Facade for XMLRPC proxies.

	
class pyactor.rpcserver.Source(addr)

	Facade for simple remote communication using XMLRPCServer.

	
run()

	Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method
invokes the callable object passed to the object’s constructor as the
target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

	
class pyactor.rabbitserver.Sink(url)

	Facade for RabbitMQ concrete connexions to remote actors.
This manages the publish to queues.

	
class pyactor.rabbitserver.Source(addr)

	Facade for simple remote communication using RabbitMQ.
This connection uses by default the guest RabbitMQ user. To change
credentials see setRabbitCredentials().

	
run()

	Method representing the thread’s activity.

You may override this method in a subclass. The standard run() method
invokes the callable object passed to the object’s constructor as the
target argument, if any, with sequential and keyword arguments taken
from the args and kwargs arguments, respectively.

Exceptions

PyActor exceptions.

	
exception pyactor.exceptions.AlreadyExistsError(value='Not specified')

	Actor ID repeated.

	
exception pyactor.exceptions.FutureError(value='Not specified')

	Some problem with the Future.

	
exception pyactor.exceptions.HostDownError

	The Host is down.

	
exception pyactor.exceptions.HostError(value='Not specified')

	Some problem with the Host.

	
exception pyactor.exceptions.IntervalError(value='Not specified')

	Some problem with the interval.

	
exception pyactor.exceptions.NotFoundError(value='Not specified')

	Actor not found in Host.

	
exception pyactor.exceptions.PyActorTimeoutError(method='Not specified')

	Wait time expired.

Threading Type

Actor

<See source>

	
class pyactor.thread.actor.Actor(url, klass, obj)

	Actor is the instance of an object to which is possible to access
and invoke its methods remotely. Main element of the model. The
host is the one to create them (spawning -> see spawn()).

	Parameters

	
	url (str.) – URL where the actor is running.

	klass (class) – class type for the actor.

	obj (klass) – instance of the klass class to attach to the
actor.

	
is_alive()

	
	Returns

	(bool.) identifies the current state of the actor.
True if it is running.

	
receive(msg)

	The message received from the queue specifies a method of the
class the actor represents. This invokes it. If the
communication is an ASK, sends the result back
to the channel included in the message as an ASK_RESPONSE.

If it is a FUTURE, generates a FUTURE_RESPONSE
to send the result to the manager.

	Parameters

	msg – The message is a dictionary using the constants
defined in util.py (pyactor.util).

	
run()

	Creates the actor thread which will process the channel queue
while the actor is_alive(), making it able to receive
queries.

	
class pyactor.thread.actor.ActorRef(url, klass, channel=None)

	ActorRef contains the main components of an actor. These are the
URL where it is located, the communication Channel and
the class of the actor as also the synchronous and asynchronous
methods the class implements. When no channel is specified a new
one will be created which is also the default procedure.

Note

This is a superclass of Actor and has no
direct functionality.

	
class pyactor.thread.rpcactor.RPCDispatcher(url, host, mode)

	This is the actor that will manage remote sends and receives
with other hosts. Each host has one, configured depending on
the scheme specified when created.

	
receive(msg)

	The message received from the queue specifies a method of the
class the actor represents. This invokes it. If the
communication is an ASK, sends the result back
to the channel included in the message as an ASK_RESPONSE.

If it is a FUTURE, generates a FUTURE_RESPONSE
to send the result to the manager.

	Parameters

	msg – The message is a dictionary using the constants
defined in util.py (pyactor.util).

Intervals

<See source>

	
pyactor.thread.intervals.interval_host(host, time, f, *args, **kwargs)

	Creates an Event attached to the host that will execute the f
function every time seconds.

See example in Sample 11 - Intervals

	Parameters

	
	host (Proxy) – host proxy. Can be obtained from inside a
class with self.host.

	time (int) – seconds for the intervals.

	f (func) – function to be called every time seconds.

	args (list) – arguments for f.

	Returns

	Event instance of the interval.

	
pyactor.thread.intervals.later(timeout, f, *args, **kwargs)

	Sets a timer that will call the f function past timeout seconds.

See example in Sample 11 - Intervals

	Returns

	Timer

	
pyactor.thread.intervals.sleep(time)

	Facade for the sleep function. Avoid using time.sleep.

	Parameters

	time (int) – time to sleep, in seconds. (Float for second
divisions)

Parallel

<See source>

	
class pyactor.thread.parallels.ActorParallel(url, klass, obj)

	Actor with parallel methods. Parallel methods are invoked in new
threads, so their invocation do not block the actor allowing it to
process many queries at a time.
To avoid concurrence problems, this actors use Locks to guarantee
its correct state.

	
get_lock()

	
	Returns

	Lock of the actor.

	
receive(msg)

	Overwriting Actor.receive(). Adds the checks and
features required by parallel methods.

	Parameters

	msg – The message is a dictionary using the constants
defined in util.py (pyactor.util).

	
class pyactor.thread.parallels.ParallelAskWrapper(method, actor, lock)

	Wrapper for ask methods that have to be called in a parallel way.

	
class pyactor.thread.parallels.ParallelTellWrapper(method, actor, lock)

	Wrapper for tell methods that have to be called in a parallel way.

Future

<See source>

	
class pyactor.thread.future.Future(fid, future_ref, manager_channel)

	Container for the result of an ask query sent asynchronously which
could not be resolved yet.

	Parameters

	fid (str.) – future ID.

	
add_callback(method)

	Attaches a method that will be called when the future finishes.

	Parameters

	method – A callable from an actor that will be called
when the future completes. The only argument for that
method must be the future itself from which you can get the
result though future.:meth:`result()`. If the future has
already completed, then the callable will be called
immediately.

Note

This functionality only works when called from an actor,
specifying a method from the same actor.

	
done()

	Return True if the future finished executing.

	
exception(timeout=None)

	Return a exception raised by the call that the future
represents.
:param timeout: The number of seconds to wait for the exception

if the future has not been completed. None, the default,
sets no limit.

	Returns

	The exception raised by the call that the future
represents or None if the call completed without raising.

	Raises

	TimeoutError: If the timeout is reached before the
future ends execution.

	
result(timeout=None)

	Returns the result of the call that the future represents.

	Parameters

	timeout – The number of seconds to wait for the result
if the future has not been completed. None, the default,
sets no limit.

	Returns

	The result of the call that the future represents.

	Raises

	TimeoutError: If the timeout is reached before the
future ends execution.

	Raises

	Exception: If the call raises the Exception.

	
running()

	Return True if the future is currently executing.

	
send_work()

	Sends the query to the actor for it to start executing the work.

It is possible to execute once again a future that has finished
if necessary (overwriting the results), but only one execution
at a time.

	
set_exception(exception)

	Sets the result of the future as being the given exception.
Only called internally.

	
set_result(result)

	Sets the return value of work associated with the future.
Only called internally.

	
class pyactor.thread.future.FutureManager

	A manager that controls the creation and execution of the futures in a host.

	
class pyactor.thread.future.FutureRef(fid, future_ref, manager_channel)

	
	
result(timeout=None)

	Returns the result of the call that the future represents.

	Parameters

	timeout – The number of seconds to wait for the result
if the future has not been completed. None, the default,
sets no limit.

	Returns

	The result of the call that the future represents.

	Raises

	TimeoutError: If the timeout is reached before the
future ends execution.

	Raises

	Exception: If the call raises the Exception.

Gevent Type

Actor

<See source>

	
class pyactor.green_thread.actor.Actor(url, klass, obj)

	Actor is the instance of an object to which is possible to access
and invoke its methods remotely. Main element of the model. The
host is the one to create them (spawning -> see spawn()).

	Parameters

	
	url (str.) – URL where the actor is running.

	klass (class) – class type for the actor.

	obj (klass) – instance of the klass class to attach to the
actor.

	
is_alive()

	
	Returns

	(bool.) identifies the current state of the actor.
True if it is running.

	
receive(msg)

	The message received from the queue specifies a method of the
class the actor represents. This invokes it. If the
communication is an ASK, sends the result back
to the channel included in the message as an ASK_RESPONSE.

If it is a FUTURE, generates a FUTURE_RESPONSE
to send the result to the manager.

	Parameters

	msg – The message is a dictionary using the constants
defined in util.py (pyactor.util).

	
run()

	Creates the actor thread which will process the channel queue
while the actor is_alive(), making it able to receive
queries.

	
class pyactor.green_thread.actor.ActorRef(url, klass, channel=None)

	ActorRef contains the main components of an actor. These are the
URL where it is located, the communication Channel and
the class of the actor as also the synchronous and asynchronous
methods the class implements. When no channel is specified a new
one will be created which is also the default procedure.

Note

This is a superclass of Actor and has no
direct functionality.

	
class pyactor.green_thread.rpcactor.RPCDispatcher(url, host, mode)

	This is the actor that will manage remote sends and receives
with other hosts. Each host has one, configured depending on
the scheme specified when created.

	
receive(msg)

	The message received from the queue specifies a method of the
class the actor represents. This invokes it. If the
communication is an ASK, sends the result back
to the channel included in the message as an ASK_RESPONSE.

If it is a FUTURE, generates a FUTURE_RESPONSE
to send the result to the manager.

	Parameters

	msg – The message is a dictionary using the constants
defined in util.py (pyactor.util).

Intervals

<See source>

	
pyactor.green_thread.intervals.interval_host(host, time, f, *args, **kwargs)

	Creates an Event attached to the host that will execute the f
function every time seconds.

See example in Sample 11 - Intervals

	Parameters

	
	host (Proxy) – host proxy. Can be obtained from inside a
class with self.host.

	time (int) – seconds for the intervals.

	f (func) – function to be called every time seconds.

	args (list) – arguments for f.

	Returns

	Event instance of the interval.

	
pyactor.green_thread.intervals.later(timeout, f, *args, **kwargs)

	Sets a timer that will call the f function past timeout seconds.

See example in Sample 11 - Intervals

	Returns

	Greenlet new ‘thread’ which will perform the call
when specified.

	
pyactor.green_thread.intervals.sleep(seconds)

	Facade for the sleep function. Do not use time.sleep if you are
running green threads.

	Parameters

	time (int) – time to sleep, in seconds. (Float for second
divisions)

Parallel

<See source>

	
class pyactor.green_thread.parallels.ActorParallel(url, klass, obj)

	Actor with parallel methods. Parallel methods are invoked in new
threads, so their invocation do not block the actor allowing it to
process many queries at a time.
Green threads do not have concurrence problems so no need to use
Locks in this implementation.

	
receive(msg)

	Overwriting Actor.receive(). Adds the checks and
features required by parallel methods.

	Parameters

	msg – The message is a dictionary using the constants
defined in util.py (pyactor.util).

	
class pyactor.green_thread.parallels.ParallelAskWrapper(method, actor)

	Wrapper for ask methods that have to be called in a parallel way.

	
class pyactor.green_thread.parallels.ParallelTellWrapper(method, actor)

	Wrapper for tell methods that have to be called in a parallel way.

Future

<See source>

	
class pyactor.green_thread.future.Future(fid, future_ref, manager_channel)

	Container for the result of an ask query sent asynchronously which
could not be resolved yet.

	Parameters

	fid (str.) – future ID.

	
add_callback(method)

	Attaches a method that will be called when the future finishes.

	Parameters

	method – A callable from an actor that will be called
when the future completes. The only argument for that
method must be the future itself from which you can get the
result though future.:meth:`result()`. If the future has
already completed, then the callable will be called
immediately.

Note

This functionality only works when called from an actor,
specifying a method from the same actor.

	
done()

	Return True if the future finished executing.

	
exception(timeout=None)

	Return a exception raised by the call that the future
represents.
:param timeout: The number of seconds to wait for the exception

if the future has not been completed. None, the default,
sets no limit.

	Returns

	The exception raised by the call that the future
represents or None if the call completed without raising.

	Raises

	TimeoutError: If the timeout is reached before the
future ends execution.

	
result(timeout=None)

	Returns the result of the call that the future represents.

	Parameters

	timeout – The number of seconds to wait for the result
if the future has not been completed. None, the default,
sets no limit.

	Returns

	The result of the call that the future represents.

	Raises

	TimeoutError: If the timeout is reached before the
future ends execution.

	Raises

	Exception: If the call raises the Exception.

	
running()

	Return True if the future is currently executing.

	
send_work()

	Sends the query to the actor for it to start executing the work.

It is possible to execute once again a future that has finished
if necessary (overwriting the results), but only one execution
at a time.

	
set_exception(exception)

	Sets the result of the future as being the given exception.
Only called internally.

	
set_result(result)

	Sets the return value of work associated with the future.
Only called internally.

	
class pyactor.green_thread.future.FutureManager

	A manager that controls the creation and execution of the futures in a host.

	
class pyactor.green_thread.future.FutureRef(fid, future_ref, manager_channel)

	
	
result(timeout=None)

	Returns the result of the call that the future represents.

	Parameters

	timeout – The number of seconds to wait for the result
if the future has not been completed. None, the default,
sets no limit.

	Returns

	The result of the call that the future represents.

	Raises

	TimeoutError: If the timeout is reached before the
future ends execution.

	Raises

	Exception: If the call raises the Exception.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pyactor	

 	
 	
 pyactor.context	

 	
 	
 pyactor.exceptions	

 	
 	
 pyactor.green_thread	

 	
 	
 pyactor.green_thread.actor	

 	
 	
 pyactor.green_thread.future	

 	
 	
 pyactor.green_thread.intervals	

 	
 	
 pyactor.green_thread.parallels	

 	
 	
 pyactor.green_thread.rpcactor	

 	
 	
 pyactor.proxy	

 	
 	
 pyactor.rabbitserver	

 	
 	
 pyactor.rpcserver	

 	
 	
 pyactor.thread	

 	
 	
 pyactor.thread.actor	

 	
 	
 pyactor.thread.future	

 	
 	
 pyactor.thread.intervals	

 	
 	
 pyactor.thread.parallels	

 	
 	
 pyactor.thread.rpcactor	

 	
 	
 pyactor.util	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | N
 | P
 | R
 | S
 | T

A

 	
 	Actor (class in pyactor.green_thread.actor)

 	(class in pyactor.thread.actor)

 	ActorParallel (class in pyactor.green_thread.parallels)

 	(class in pyactor.thread.parallels)

 	ActorRef (class in pyactor.green_thread.actor)

 	(class in pyactor.thread.actor)

 	
 	add_callback() (pyactor.green_thread.future.Future method)

 	(pyactor.thread.future.Future method)

 	AlreadyExistsError

 	AskRefWrapper (class in pyactor.proxy)

 	AskWrapper (class in pyactor.proxy)

 	attach_interval() (pyactor.context.Host method)

C

 	
 	create_host() (in module pyactor.context)

D

 	
 	detach_interval() (pyactor.context.Host method)

 	done() (pyactor.green_thread.future.Future method)

 	(pyactor.thread.future.Future method)

 	
 	dumps() (pyactor.context.Host method)

E

 	
 	exception() (pyactor.green_thread.future.Future method)

 	(pyactor.thread.future.Future method)

F

 	
 	Future (class in pyactor.green_thread.future)

 	(class in pyactor.thread.future)

 	FutureError

 	
 	FutureManager (class in pyactor.green_thread.future)

 	(class in pyactor.thread.future)

 	FutureRef (class in pyactor.green_thread.future)

 	(class in pyactor.thread.future)

G

 	
 	get_id() (pyactor.proxy.Proxy method)

 	
 	get_lock() (pyactor.thread.parallels.ActorParallel method)

 	get_url() (pyactor.proxy.Proxy method)

H

 	
 	has_actor() (pyactor.context.Host method)

 	Host (class in pyactor.context)

 	
 	HostDownError

 	HostError

I

 	
 	interval() (in module pyactor.context)

 	interval_host() (in module pyactor.green_thread.intervals)

 	(in module pyactor.thread.intervals)

 	
 	IntervalError

 	is_alive() (pyactor.green_thread.actor.Actor method)

 	(pyactor.thread.actor.Actor method)

L

 	
 	later() (in module pyactor.context)

 	(in module pyactor.green_thread.intervals)

 	(in module pyactor.thread.intervals)

 	
 	loads() (pyactor.context.Host method)

 	lookup() (pyactor.context.Host method)

 	lookup_url() (pyactor.context.Host method)

N

 	
 	new_parallel() (pyactor.context.Host method)

 	
 	NotFoundError

P

 	
 	ParallelAskWrapper (class in pyactor.green_thread.parallels)

 	(class in pyactor.thread.parallels)

 	ParallelTellWrapper (class in pyactor.green_thread.parallels)

 	(class in pyactor.thread.parallels)

 	Proxy (class in pyactor.proxy)

 	pyactor (module)

 	pyactor.context (module)

 	pyactor.exceptions (module)

 	pyactor.green_thread (module)

 	pyactor.green_thread.actor (module)

 	pyactor.green_thread.future (module)

 	pyactor.green_thread.intervals (module)

 	
 	pyactor.green_thread.parallels (module)

 	pyactor.green_thread.rpcactor (module)

 	pyactor.proxy (module)

 	pyactor.rabbitserver (module)

 	pyactor.rpcserver (module)

 	pyactor.thread (module)

 	pyactor.thread.actor (module)

 	pyactor.thread.future (module)

 	pyactor.thread.intervals (module)

 	pyactor.thread.parallels (module)

 	pyactor.thread.rpcactor (module)

 	pyactor.util (module)

 	PyActorTimeoutError

R

 	
 	receive() (pyactor.green_thread.actor.Actor method)

 	(pyactor.green_thread.parallels.ActorParallel method)

 	(pyactor.green_thread.rpcactor.RPCDispatcher method)

 	(pyactor.thread.actor.Actor method)

 	(pyactor.thread.parallels.ActorParallel method)

 	(pyactor.thread.rpcactor.RPCDispatcher method)

 	RequestHandler (class in pyactor.rpcserver)

 	result() (pyactor.green_thread.future.Future method)

 	(pyactor.green_thread.future.FutureRef method)

 	(pyactor.thread.future.Future method)

 	(pyactor.thread.future.FutureRef method)

 	
 	RPCDispatcher (class in pyactor.green_thread.rpcactor)

 	(class in pyactor.thread.rpcactor)

 	run() (pyactor.green_thread.actor.Actor method)

 	(pyactor.rabbitserver.Source method)

 	(pyactor.rpcserver.Source method)

 	(pyactor.thread.actor.Actor method)

 	running() (pyactor.green_thread.future.Future method)

 	(pyactor.thread.future.Future method)

S

 	
 	send_work() (pyactor.green_thread.future.Future method)

 	(pyactor.thread.future.Future method)

 	serve_forever() (in module pyactor.context)

 	set_context() (in module pyactor.context)

 	set_exception() (pyactor.green_thread.future.Future method)

 	(pyactor.thread.future.Future method)

 	set_rabbit_credentials() (in module pyactor.context)

 	set_result() (pyactor.green_thread.future.Future method)

 	(pyactor.thread.future.Future method)

 	
 	shutdown() (in module pyactor.context)

 	Sink (class in pyactor.rabbitserver)

 	(class in pyactor.rpcserver)

 	sleep() (in module pyactor.context)

 	(in module pyactor.green_thread.intervals)

 	(in module pyactor.thread.intervals)

 	Source (class in pyactor.rabbitserver)

 	(class in pyactor.rpcserver)

 	spawn() (pyactor.context.Host method)

 	stop_actor() (pyactor.context.Host method)

T

 	
 	TellRefWrapper (class in pyactor.proxy)

 	
 	TellWrapper (class in pyactor.proxy)

Source

Context

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618

	import inspect
from os import path
from signal import SIGINT
from importlib import import_module

from urllib.parse import urlparse
from .proxy import Proxy, set_actor, ProxyRef, TellWrapper
from .exceptions import HostDownError, AlreadyExistsError, NotFoundError, \
 HostError, IntervalError
from . import util

import pyactor.thread.parallels
parallels = pyactor.thread.parallels
core_type = None
available_types = ['thread', 'green_thread']
actor_module = None
intervals = None
parallels = None
future = None
rpcactor = None
signal = None

def set_rabbit_credentials(user, password):
 """
 If you use a RabbitMQ server and want to make remote queries, you might
 need to specify new credentials for connection.

 By default, PyActor uses the guest RabbitMQ user.

 :param str. user: Name for the RabbitMQ user.
 :param str. password: Password for the RabbitMQ user.
 """
 util.RABBIT_USER = user
 util.RABBIT_PASS = password

def set_context(module_name='thread'):
 """
 This function initializes the execution context deciding which
 type of threads are being used: classic python threads or green
 threads, provided by Gevent.

 This should be called first of all in every execution, otherwise,
 the library would not work.

 The default module is 'thread'.

 :param str. module_name: Name of the module you want to use
 ('thread' or 'green_thread').
 """
 global core_type
 if core_type is None and module_name in available_types:
 core_type = module_name
 util.core_type = core_type
 global actor_module
 actor_module = import_module('pyactor.' + module_name + '.actor')
 global intervals
 intervals = import_module('pyactor.' + module_name + '.intervals')
 global parallels
 parallels = import_module('pyactor.' + module_name + '.parallels')
 global future
 future = import_module('pyactor.' + module_name + '.future')
 set_actor(module_name)
 global rpcactor
 rpcactor = import_module('pyactor.' + module_name + '.rpcactor')
 global signal
 if module_name == 'green_thread':
 signal = import_module('gevent')
 else:
 signal = import_module('signal')
 else:
 if core_type is not None:
 raise Exception("The core type was previously configured.")
 raise Exception("Bad core type.")

def create_host(url="local://local:6666/host"):
 """
 This is the main function to create a new Host to which you can
 spawn actors. It will be set by default at local address if no
 parameter *url* is given. This function should be called once
 for execution or after calling :meth:`~.shutdown` to the previous
 host.

 However, it is possible to create locally more than one host
 and simulate a remote communication between them if they are of some
 remote type (`http` or `amqp`), but the first one created will
 be the main host, which is the one hosting the queries from
 the main function.
 Of course, every host must be initialized with a different URL(port).
 Although that, more than one host should not be required for any real
 project.

 :param str. url: URL where to start and bind the host.
 :return: :class:`~.Proxy` to the new host created.
 :raises: Exception if there is a host already created with that URL.
 """
 if url in util.hosts.keys():
 raise HostError("Host already created. Only one host can"
 " be ran with the same url.")
 else:
 if not util.hosts:
 util.main_host = Host(url)
 util.hosts[url] = util.main_host
 else:
 util.hosts[url] = Host(url)
 return util.hosts[url].proxy

class Host(object):
 """
 Host must be created using the function :func:`~create_host`.
 Do not create a Host directly.

 Host is a container for actors. It manages the spawn and
 elimination of actors and their communication through channels. Also
 configures the remote points where the actors will be able to receive
 and send queries remotely. Additionally, controls the correct management
 of its actors' threads and intervals.

 The host is managed as an actor itself so you interact with it through
 its :class:`~.Proxy`. This allows you to pass it to another host to
 spawn remotely.

 :param str. url: URL that identifies the host and where to find it.
 """
 _tell = {'attach_interval', 'detach_interval', 'hello', 'stop_actor'}
 _ask = {'spawn', 'lookup', 'lookup_url', 'say_hello', 'has_actor'}
 _ref = {'spawn', 'lookup', 'lookup_url'}

 def __init__(self, url):
 self.actors = {}
 self.threads = {}
 self.pthreads = {}
 self.intervals = {}
 self.locks = {}
 self.url = url
 self.running = False
 self.alive = True
 self.__load_transport(url)
 self.__init_host()

 self.ppool = None
 # self.cleaner = interval_host(get_host(), CLEAN_INT, self.do_clean)

 def hello(self):
 print("Hello!!")

 def say_hello(self):
 print("Sending hello.")
 return "Hello from HOST!!"

 def __load_transport(self, url):
 """
 For remote communication. Sets this host's communication dispatcher
 at the address and port specified.

 The scheme must be 'http' if using a XMLRPC dispatcher.
 'amqp' for RabbitMQ communications.

 This method is internal. Automatically called when creating the host.

 :param str. url: URL where to bind the host. Must be provided in
 the typical form: 'scheme://address:port/hierarchical_path'
 """
 aurl = urlparse(url)
 addrl = aurl.netloc.split(':')
 self.addr = addrl[0], addrl[1]
 self.transport = aurl.scheme
 self.host_url = aurl

 if aurl.scheme == 'http':
 self.__launch_actor('http',
 rpcactor.RPCDispatcher(url, self, 'rpc'))

 elif aurl.scheme == 'amqp':
 self.__launch_actor('amqp', rpcactor.RPCDispatcher(url, self,
 'rabbit'))

 def spawn(self, aid, klass, *param, **kparam):
 """
 This method creates an actor attached to this host. It will be
 an instance of the class *klass* and it will be assigned an ID
 that identifies it among the host.

 This method can be called remotely synchronously.

 :param str. aid: identifier for the spawning actor. Unique within
 the host.
 :param class klass: class type of the spawning actor. If you are
 spawning remotely and the class is not in the server module,
 you must specify here the path to that class in the form
 'module.py/Class' so the server can import the class and create
 the instance.
 :param param: arguments for the init function of the
 spawning actor class.
 :param kparam: arguments for the init function of the
 spawning actor class.
 :return: :class:`~.Proxy` to the spawned actor.
 :raises: :class:`AlreadyExistsError`, if the ID specified is
 already in use.
 :raises: :class:`HostDownError` if the host is not initiated.
 """
 if param is None:
 param = []
 if not self.alive:
 raise HostDownError()
 if isinstance(klass, str):
 module, klass = klass.split('/')
 module_ = __import__(module, globals(), locals(),
 [klass])
 klass_ = getattr(module_, klass)
 elif isinstance(klass, type):
 klass_ = klass
 else:
 raise Exception(f"Given class is not a class: {klass}")
 url = f'{self.transport}://{self.host_url.netloc}/{aid}'
 if url in self.actors.keys():
 raise AlreadyExistsError(url)
 else:
 obj = klass_(*param, **kparam)
 obj.id = aid
 obj.url = url
 if self.running:
 obj.host = self.proxy
 # else:
 # obj.host = Exception("Host is not an active actor. \
 # Use 'init_host' to make it alive.")

 if hasattr(klass_, '_parallel') and klass_._parallel:
 new_actor = parallels.ActorParallel(url, klass_, obj)
 lock = new_actor.get_lock()
 self.locks[url] = lock
 else:
 new_actor = actor_module.Actor(url, klass_, obj)

 obj.proxy = Proxy(new_actor)
 self.__launch_actor(url, new_actor)
 return Proxy(new_actor)

 def has_actor(self, aid):
 """
 Checks if the given id is used in the host by some actor.

 :param str. aid: identifier of the actor to check.
 :return: True if the id is used within the host.
 """
 url = f'{self.transport}://{self.host_url.netloc}/{aid}'
 return url in self.actors.keys()

 def lookup(self, aid):
 """
 Gets a new proxy that references to the actor of this host
 (only actors in this host) identified by the given ID.

 This method can be called remotely synchronously.

 :param str. aid: identifier of the actor you want.
 :return: :class:`~.Proxy` to the actor required.
 :raises: :class:`NotFoundError` if the actor does not exist.
 :raises: :class:`HostDownError` if the host is down.
 """
 if not self.alive:
 raise HostDownError()
 url = f"{self.transport}://{self.host_url.netloc}/{aid}"
 if url in self.actors.keys():
 return Proxy(self.actors[url])
 else:
 raise NotFoundError(url)

 def shutdown(self):
 # """
 # For internal calls.
 # """
 if self.alive:
 print(f"Host {self.addr} :#: shutting down...")
 for interval_event in self.intervals.values():
 interval_event.set()

 for actor in self.actors.values():
 Proxy(actor).stop()

 # stop the pool (close & join)
 if self.ppool is not None:
 if core_type == 'thread':
 self.ppool.close()
 self.ppool.join()

 # By now, all pthreads should be gone
 for parallel in self.pthreads.keys():
 parallel.join()

 for thread in self.threads.keys():
 try:
 thread.join()
 except Exception as e:
 print(e)

 self.locks.clear()
 self.actors.clear()
 self.threads.clear()
 self.pthreads.clear()
 self.running = False
 self.alive = False

 del util.hosts[self.url]
 if util.main_host.url == self.url:
 util.main_host = (list(util.hosts.values())[0]
 if util.hosts.values() else None)

 print(f"Host {self.addr} :#: Bye!")

 def stop_actor(self, aid):
 """
 This method removes one actor from the Host, stopping it and deleting
 all its references.

 :param str. aid: identifier of the actor you want to stop.
 """
 url = f"{self.transport}://{self.host_url.netloc}/{aid}"
 if url != self.url:
 a = self.actors[url]
 Proxy(a).stop()
 a.thread.join()
 del self.actors[url]
 del self.threads[a.thread]

 def lookup_url(self, url, klass, module=None):
 """
 Gets a proxy reference to the actor indicated by the URL in the
 parameters. It can be a local reference or a remote direction to
 another host.

 This method can be called remotely synchronously.

 :param srt. url: address that identifies an actor.
 :param class klass: the class of the actor.
 :param srt. module: if the actor class is not in the calling module,
 you need to specify the module where it is here. Also, the *klass*
 parameter change to be a string.
 :return: :class:`~.Proxy` of the actor requested.
 :raises: :class:`NotFoundError`, if the URL specified do not
 correspond to any actor in the host.
 :raises: :class:`HostDownError` if the host is down.
 :raises: :class:`HostError` if there is an error looking for
 the actor in another server.
 """
 if not self.alive:
 raise HostDownError()
 aurl = urlparse(url)
 if self.__is_local(aurl):
 if url not in self.actors.keys():
 raise NotFoundError(url)
 else:
 return Proxy(self.actors[url])
 else:
 try:
 dispatcher = self.actors[aurl.scheme]
 if module is not None:
 try:
 module_ = __import__(module, globals(), locals(),
 [klass])
 klass_ = getattr(module_, klass)
 except Exception as e:
 raise HostError("At lookup_url: " +
 "Import failed for module " + module +
 ", class " + klass +
 ". Check this values for the lookup." +
 " ERROR: " + str(e))
 elif inspect.isclass(klass):
 klass_ = klass
 else:
 raise HostError("The class specified to look up is" +
 " not a class.")
 remote_actor = actor_module.ActorRef(url, klass_,
 dispatcher.channel)
 return Proxy(remote_actor)
 except HostError:
 raise
 except Exception as e:
 raise HostError(
 f"ERROR looking for the actor on another server. Hosts must"
 f" be in http to work properly. {str(e)}")

 def __is_local(self, aurl):
 # '''Private method.
 # Tells if the address given is from this host.
 #
 # :param ParseResult aurl: address to analyze.
 # :return: (*Bool.*) If is local (**True**) or not (**False**).
 # '''
 return self.host_url.netloc == aurl.netloc

 def __launch_actor(self, url, actor):
 # '''Private method.
 # This function makes an actor alive to start processing queries.
 #
 # :param str. url: identifier of the actor.
 # :param Actor actor: instance of the actor.
 # '''
 actor.run()
 self.actors[url] = actor
 self.threads[actor.thread] = url

 def __init_host(self):
 # '''
 # This method creates an actor for the Host so it can spawn actors
 # remotely. Called always from the init function of the host, so
 # no need for calling this directly.
 # '''
 if not self.running and self.alive:
 self.id = self.url
 host = actor_module.Actor(self.url, Host, self)
 self.proxy = Proxy(host)
 # self.actors[self.url] = host
 self.__launch_actor(self.url, host)
 # host.run()
 # self.threads[host.thread] = self.url
 self.running = True

 def attach_interval(self, interval_id, interval_event):
 """Registers an interval event to the host."""
 self.intervals[interval_id] = interval_event

 def detach_interval(self, interval_id):
 """Deletes an interval event from the host registry."""
 del self.intervals[interval_id]

 def dumps(self, param):
 """
 Checks the parameters generating new proxy instances to avoid
 query concurrences from shared proxies and creating proxies for
 actors from another host.
 """
 if isinstance(param, Proxy):
 module_name = param.actor.klass.__module__
 if module_name == '__main__':
 module_name = path.splitext(
 path.basename(inspect.getfile(param.actor.klass)))[0]
 return ProxyRef(param.actor.url, param.actor.klass.__name__,
 module_name)
 elif isinstance(param, list):
 return [self.dumps(elem) for elem in param]
 elif isinstance(param, dict):
 new_dict = param
 for key in new_dict.keys():
 new_dict[key] = self.dumps(new_dict[key])
 return new_dict
 elif isinstance(param, tuple):
 return tuple([self.dumps(elem) for elem in param])
 else:
 return param

 def loads(self, param):
 """
 Checks the return parameters generating new proxy instances to
 avoid query concurrences from shared proxies and creating
 proxies for actors from another host.
 """
 if isinstance(param, ProxyRef):
 try:
 return self.lookup_url(param.url, param.klass, param.module)
 except HostError:
 print("Can't lookup for the actor received with the call.",
 "It does not exist or the url is unreachable.",
 param)
 raise HostError(param)
 elif isinstance(param, list):
 return [self.loads(elem) for elem in param]
 elif isinstance(param, tuple):
 return tuple([self.loads(elem) for elem in param])
 elif isinstance(param, dict):
 new_dict = param
 for key in new_dict.keys():
 new_dict[key] = self.loads(new_dict[key])
 return new_dict
 else:
 return param

 def new_parallel(self, a_function, *params):
 """
 Register a new thread executing a parallel method.
 """
 # Create a pool if not created (threads or Gevent...)
 if self.ppool is None:
 if core_type == 'thread':
 from multiprocessing.pool import ThreadPool
 self.ppool = ThreadPool(500)
 else:
 from gevent.pool import Pool
 self.ppool = Pool(500)
 # Add the new task to the pool
 self.ppool.apply_async(a_function, *params)

def shutdown(url=None):
 """
 Stops the Host passed by parameter or all of them if none is
 specified, stopping at the same time all its actors.
 Should be called at the end of its usage, to finish correctly
 all the connections and threads.
 """
 if url is None:
 for host in list(util.hosts.values()):
 host.shutdown()
 global core_type
 core_type = None
 else:
 host = util.hosts[url]
 host.shutdown()

def signal_handler(signal=None, frame=None):
 # '''
 # This gets the signal of Ctrl+C and stops the host. It also ends
 # the execution. Needs the invocation of :meth:`serve_forever`.
 #
 # :param signal: SIGINT signal interruption sent with a Ctrl+C.
 # :param frame: the current stack frame. (not used)
 # '''
 print("You pressed Ctrl+C!")
 util.main_host.serving = False
 shutdown(util.main_host.url)

def serve_forever():
 """
 This allows the host (main host) to keep alive indefinitely so its actors
 can receive queries at any time.
 The main thread stays blocked forever.
 To kill the execution, press Ctrl+C.

 See usage example in :ref:`sample6`.
 """
 if not util.main_host.alive:
 raise Exception("This host is already shut down.")
 util.main_host.serving = True
 signal.signal(SIGINT, signal_handler)
 print("Press Ctrl+C to kill the execution")
 while util.main_host is not None and util.main_host.serving:
 try:
 sleep(1)
 except Exception:
 pass
 print("BYE!")

def interval(host, time, actor, method, *args, **kwargs):
 """
 Creates an Event attached to the host for management that will
 execute the *method* of the *actor* every *time* seconds.

 See example in :ref:`sample_inter`

 :rtype:
 :param Proxy host: host that will manage the interval, commonly the
 host of the actor.
 :param float time: seconds for the intervals.
 :param Proxy actor: actor to which make the call every *time* seconds.
 :param Str. method: method of the *actor* to be called.
 :param list args: arguments for *method*.
 :return: :class:`Event` instance of the interval.
 """
 call = getattr(actor, method, None)
 if not callable(call):
 raise IntervalError(
 f"The actor {actor.get_id()} does not have the method {method}.")
 if call.__class__.__name__ in ["TellWrapper", "TellRefWrapper"]:
 # If the method is a normal tell, the interval thread can send
 # the calls normally.
 # It it is a Ref Tell, the proxies in the args would be parsed
 # during the call to this very method. So the call can be made
 # as a normal Tell. The actor will do the loads normally on the
 # receive as it has its methods marked as ref.
 if call.__class__.__name__ is "TellRefWrapper":
 call.__call__ = TellWrapper.__call__

 return intervals.interval_host(host, time, call, *args, **kwargs)
 else:
 raise IntervalError("The callable for the interval must be a tell" +
 " method of the actor.")

def later(timeout, actor, method, *args, **kwargs):
 """
 Sets a timer that will call the *method* of the *actor* past *timeout*
 seconds.

 See example in :ref:`sample_inter`

 :param int timeout: seconds until the method is called.
 :param Proxy actor: actor to which make the call after *time* seconds.
 :param Str. method: method of the *actor* to be called.
 :param list args: arguments for *method*.
 :return: manager of the later (Timer in thread,
 Greenlet in green_thread)
 """
 call = getattr(actor, method, None)
 if not callable(call):
 raise IntervalError(f"later: The actor {actor.get_id()} does not "
 f"have the method {method}.")
 if call.__class__.__name__ in ["TellWrapper", "TellRefWrapper"]:
 # As with the interval, args have already been dumped.
 if call.__class__.__name__ is "TellRefWrapper":
 call.__call__ = TellWrapper.__call__
 return intervals.later(timeout, call, *args, **kwargs)
 else:
 raise IntervalError("The callable for the later must be a tell "
 "method of the actor.")

def sleep(seconds):
 """
 Facade for the sleep function. Do not use time.sleep if you are
 running green threads.
 """
 intervals.sleep(seconds)

Proxy

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

	from importlib import import_module
from queue import Empty

from .exceptions import PyActorTimeoutError, HostError
from .util import ASK, TELL, TYPE, METHOD, PARAMS, CHANNEL, TO, RESULT
from .util import get_host, get_lock, get_current

actor_channel = None
future_module = None

def set_actor(module_name):
 global actor_channel
 actor_channel = import_module('.' + module_name + '.channel', __package__)

 global future_module
 future_module = import_module('.' + module_name + '.future', __package__)

class ProxyRef(object):
 def __init__(self, actor, class_, module):
 self.url = actor
 self.klass = class_
 self.module = module

 def __repr__(self):
 return f"ProxyRef(actor={self.url}, class={self.klass} " \
 f"mod={self.module})"

class Proxy(object):
 """
 Proxy is the class that supports to create a remote reference to an
 actor and invoke its methods. All the references to actors will be
 proxies, even the host.
 To get a proxy to an Actor, you should use one of the host functions
 that provide one, like :meth:`~.spawn` or :meth:`~.lookup_url`.

 :param Actor actor: the actor the proxy will manage.
 """

 def __init__(self, actor):
 self.__channel = actor.channel
 self.actor = actor
 self.__lock = get_lock()
 for method in actor.ask_ref:
 setattr(self, method, AskRefWrapper(self.__channel, method,
 actor.url))
 for method in actor.tell_ref:
 setattr(self, method, TellRefWrapper(self.__channel, method,
 actor.url))
 for method in actor.tell:
 setattr(self, method, TellWrapper(self.__channel, method,
 actor.url))
 for method in actor.ask:
 setattr(self, method, AskWrapper(self.__channel, method,
 actor.url))

 def __repr__(self):
 return f"Proxy(actor={self.actor}, tell={self.actor.tell}" \
 f" ref={self.actor.tell_ref}, ask={self.actor.ask}" \
 f" ref={self.actor.ask_ref})"

 def __str__(self):
 return f"{self.actor}'s proxy"

 def __eq__(self, other):
 if isinstance(other, self.__class__):
 return self.actor.url == other.actor.url
 return NotImplemented

 def __ne__(self, other):
 if isinstance(other, self.__class__):
 return not self == other
 return NotImplemented

 def __hash__(self):
 return hash(self.actor.url)

 def get_id(self):
 """
 :return: the id of the actor that this proxy holds.
 :raises: Exception if the proxy holds a remote actor. Use URL.
 """
 try:
 return self.actor.id
 except AttributeError:
 raise Exception("This proxy holds a remote actor." +
 " Use the url instead of the id.")

 def get_url(self):
 """
 :return: the URL of the actor that this proxy holds.
 """
 return self.actor.url

class TellWrapper(object):
 """
 Wrapper for Tell type queries to the proxy. Creates the request and
 sends it through the channel.

 :param Channel channel: communication way for the query.
 :param str. method: name of the method this query is going to invoke.
 :param str. actor_url: URL address where the actor is set.
 """

 def __init__(self, channel, method, actor_url):
 self.__channel = channel
 self.__method = method
 self.__target = actor_url

 def __call__(self, *args, **kwargs):
 # SENDING MESSAGE TELL
 # msg = TellRequest(TELL, self.__method, args, self.__target)
 msg = {TYPE: TELL, METHOD: self.__method, PARAMS: (args, kwargs),
 TO: self.__target}
 self.__channel.send(msg)

class AskWrapper(object):
 """
 Wrapper for Ask type queries to the proxy. Calling it blocks the
 execution until the result is returned or timeout is reached. You
 can add the tagged parameter "timeout" to change the time limit to
 wait. Default timeout is set to 10s. It is also possible to specify
 "future=True" to get an instant response with a :class:`Future`
 object with which you can manage the result.

 :param Channel channel: communication way for the query.
 :param str. method: name of the method this query is gonna invoke.
 :param str. actor_url: URL address where the actor is set.
 """

 def __init__(self, channel, method, actor_url):
 self._actor_channel = channel
 self._method = method
 self.target = actor_url

 def __call__(self, *args, **kwargs):
 if 'future' in kwargs.keys():
 future = kwargs['future']
 del kwargs['future']
 else:
 future = False

 self.__lock = get_lock()
 if not future:
 self.__channel = actor_channel.Channel()
 if 'timeout' in kwargs.keys():
 timeout = kwargs['timeout']
 del kwargs['timeout']
 else:
 timeout = 10
 # SENDING MESSAGE ASK
 # msg = AskRequest(ASK, self._method, args, self.__channel,
 # self.target)
 msg = {TYPE: ASK, METHOD: self._method, PARAMS: (args, kwargs),
 CHANNEL: self.__channel, TO: self.target}
 self._actor_channel.send(msg)
 if self.__lock is not None:
 self.__lock.release()
 try:
 response = self.__channel.receive(timeout)
 result = response[RESULT]
 except Empty:
 if self.__lock is not None:
 self.__lock.acquire()
 raise PyActorTimeoutError(self._method)
 if self.__lock is not None:
 self.__lock.acquire()
 if isinstance(result, Exception):
 raise result
 else:
 return result
 else:
 future_ref = {METHOD: self._method, PARAMS: (args, kwargs),
 CHANNEL: self._actor_channel, TO: self.target,
 'LOCK': self.__lock}
 manager = get_current()
 if manager is None:
 manager = get_host().proxy.actor
 return manager.future_manager.new_future(future_ref)

class AskRefWrapper(AskWrapper):
 """
 Wrapper for Ask queries that have a proxy in parameters or returns.
 """

 def __call__(self, *args, **kwargs):
 if 'future' in kwargs.keys():
 future = kwargs['future']
 del kwargs['future']
 else:
 future = False
 host = get_host()
 if host is not None:
 new_args = host.dumps(list(args))
 new_kwargs = host.dumps(kwargs)
 else:
 raise HostError("No such Host on the context of the call.")

 if future:
 self.__lock = get_lock()
 future_ref = {METHOD: self._method, PARAMS: (new_args, new_kwargs),
 CHANNEL: self._actor_channel, TO: self.target,
 'LOCK': self.__lock}

 manager = get_current()
 if manager is None:
 manager = get_host().proxy.actor
 return manager.future_manager.new_future(future_ref, ref=True)
 else:
 result = super(AskRefWrapper, self).__call__(*new_args,
 **new_kwargs)
 return get_host().loads(result)

class TellRefWrapper(TellWrapper):
 """Wrapper for Tell queries that have a proxy in parameters."""

 def __call__(self, *args, **kwargs):
 host = get_host()
 if host is not None:
 new_args = host.dumps(list(args))
 new_kwargs = host.dumps(kwargs)
 else:
 raise HostError("No such Host on the context of the call.")
 return super(TellRefWrapper, self).__call__(*new_args, **new_kwargs)

XMLRPC Server

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

	import pickle
import threading
import xmlrpc.client
from xmlrpc.server import SimpleXMLRPCRequestHandler
from xmlrpc.server import SimpleXMLRPCServer

class RequestHandler(SimpleXMLRPCRequestHandler):
 rpc_paths = ()

class Source(threading.Thread):
 """
 Facade for simple remote communication using XMLRPCServer.
 """

 def __init__(self, addr):
 threading.Thread.__init__(self)
 ip, port = addr
 self.addr = addr

 self.server = SimpleXMLRPCServer((ip, port),
 requestHandler=RequestHandler,
 logRequests=False,
 allow_none=True)
 # self.server.register_introspection_functions()

 def register_function(self, func):
 self.server.register_function(func, 'send')

 def run(self):
 self.server.serve_forever()

 def stop(self):
 self.server.shutdown()
 self.server.server_close()

class Sink(object):
 """
 Facade for XMLRPC proxies.
 """

 def __init__(self, url):
 self.endpoint = xmlrpc.client.ServerProxy(url)

 def send(self, msg):
 msg = pickle.dumps(msg)
 return self.endpoint.send(msg)

RabbitMQ Server

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

	import pika
import threading
import pickle
from urllib.parse import urlparse

from pyactor.util import RABBIT_USER, RABBIT_PASS

class Source(threading.Thread):
 """
 Facade for simple remote communication using RabbitMQ.
 This connection uses by default the guest RabbitMQ user. To change
 credentials see :func:`~.setRabbitCredentials`.
 """

 def __init__(self, addr):
 threading.Thread.__init__(self)
 ip, port = addr
 self.url = ip + '/' + str(port)
 credentials = pika.PlainCredentials(RABBIT_USER, RABBIT_PASS)
 params = pika.ConnectionParameters(host=ip, credentials=credentials)
 self.connection = pika.BlockingConnection(params)

 self.channel = self.connection.channel()

 self.channel.queue_declare(queue=self.url)
 # self.channel.basic_qos(prefetch_count=1)

 self.on_message = None

 def register_function(self, func):
 self.on_message = func
 self.channel.basic_consume(self.url, self.on_request,
 exclusive=True)

 def run(self):
 self.channel.start_consuming()

 def stop(self):
 self.channel.queue_delete(queue=self.url)
 self.channel.close()
 self.connection.close()

 def on_request(self, ch, method, props, body):
 self.on_message(body)
 ch.basic_ack(delivery_tag=method.delivery_tag)

class Sink(object):
 """
 Facade for RabbitMQ concrete connexions to remote actors.
 This manages the publish to queues.
 """

 def __init__(self, url):
 aurl = urlparse(url)
 address = aurl.netloc.split(':')
 ip, port = address[0], int(address[1])
 self.url = ip + '/' + str(port)
 credentials = pika.PlainCredentials(RABBIT_USER, RABBIT_PASS)
 params = pika.ConnectionParameters(host=ip, credentials=credentials)
 self.connection = pika.BlockingConnection(params)
 self.channel = self.connection.channel()

 def send(self, msg):
 msg = pickle.dumps(msg)
 self.channel.basic_publish(exchange='',
 routing_key=self.url,
 body=msg)

Thread Actor

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

	from copy import copy
from threading import Thread

from .channel import Channel
from .future import FutureManager
from ..util import ASK, TELL, FUTURE, TYPE, ASK_RESPONSE, FUTURE_RESPONSE
from ..util import METHOD, PARAMS, RESULT, CHANNEL, RPC_ID
from ..util import ref_l, ref_d

class ActorRef(object):
 """
 ActorRef contains the main components of an actor. These are the
 URL where it is located, the communication :class:`~.Channel` and
 the class of the actor as also the synchronous and asynchronous
 methods the class implements. When no channel is specified a new
 one will be created which is also the default procedure.

 .. note:: This is a superclass of :py:class:`Actor` and has no
 direct functionality.

 """

 def __init__(self, url, klass, channel=None):
 self.url = url
 self.tell = set()
 self.ask = set()
 self.klass = klass
 if channel:
 self.channel = channel
 else:
 self.channel = Channel()
 if hasattr(klass, '_tell') and klass._tell:
 self.tell = copy(klass._tell)
 if hasattr(klass, '_ask') and klass._ask:
 self.ask = copy(klass._ask)

 if hasattr(klass, '_ref'):
 self.receive = ref_l(self, self.receive)
 self.send_response = ref_d(self, self.send_response)

 self.tell_ref = self.tell & klass._ref
 self.ask_ref = self.ask & klass._ref
 for method in self.ask_ref:
 self.ask.remove(method)
 for method in self.tell_ref:
 self.tell.remove(method)
 else:
 self.ask_ref = set()
 self.tell_ref = set()

 self.tell.add('stop')

 def receive(self, msg):
 raise NotImplementedError()

 def send_response(self, result, msg):
 raise NotImplementedError()

 @property
 def _ref(self):
 return self.tell_ref | self.ask_ref

 def __str__(self):
 return f"Actor {self.url} ({self.klass.__name__})"

 def __repr__(self):
 return f"Actor(url={self.url}, class={self.klass})"

class Actor(ActorRef):
 """
 Actor is the instance of an object to which is possible to access
 and invoke its methods remotely. Main element of the model. The
 host is the one to create them (spawning -> see :meth:`~.spawn`).

 :param str. url: URL where the actor is running.
 :param class klass: class type for the actor.
 :param klass obj: instance of the *klass* class to attach to the
 actor.
 """

 def __init__(self, url, klass, obj):
 super(Actor, self).__init__(url, klass)
 self._obj = obj
 self.id = obj.id
 self.running = True
 self.thread = None
 self.future_manager = FutureManager()

 def __process_queue(self):
 while self.running:
 message = self.channel.receive()
 self.receive(message)

 def is_alive(self):
 """
 :return: (*bool.*) identifies the current state of the actor.
 True if it is running.
 """
 return self.running

 def receive(self, msg):
 """
 The message received from the queue specifies a method of the
 class the actor represents. This invokes it. If the
 communication is an ASK, sends the result back
 to the channel included in the message as an ASK_RESPONSE.

 If it is a FUTURE, generates a FUTURE_RESPONSE
 to send the result to the manager.

 :param msg: The message is a dictionary using the constants
 defined in util.py (:mod:`pyactor.util`).
 """
 if msg[TYPE] == TELL and msg[METHOD] == 'stop':
 self.running = False
 self.future_manager.stop()
 else:
 try:
 invoke = getattr(self._obj, msg[METHOD])
 params = msg[PARAMS]
 result = invoke(*params[0], **params[1])
 except Exception as e:
 if msg[TYPE] == TELL:
 print(e)
 return
 result = e
 self.send_response(result, msg)

 def send_response(self, result, msg):
 if msg[TYPE] == ASK:
 response = {TYPE: ASK_RESPONSE, RESULT: result,
 RPC_ID: msg[RPC_ID] if RPC_ID in msg.keys() else None}
 msg[CHANNEL].send(response)
 elif msg[TYPE] == FUTURE:
 response = {TYPE: FUTURE_RESPONSE, RPC_ID: msg[RPC_ID],
 RESULT: result}
 msg[CHANNEL].send(response)

 def run(self):
 """
 Creates the actor thread which will process the channel queue
 while the actor :meth:`is_alive`, making it able to receive
 queries.
 """
 self.thread = Thread(target=self.__process_queue)
 self.thread.start()

Thread Intervals

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

	import time as timep
from threading import Thread, Timer, Event

def sleep(time):
 """
 Facade for the sleep function. Avoid using time.sleep.

 :param int time: time to sleep, in seconds. (Float for second
 divisions)
 """
 timep.sleep(time)

def later(timeout, f, *args, **kwargs):
 """
 Sets a timer that will call the *f* function past *timeout* seconds.

 See example in :ref:`sample_inter`

 :return: :class:`Timer`
 """
 if kwargs is None:
 kwargs = {}
 if args is None:
 args = []
 t = Timer(timeout, f, args, kwargs)
 t.start()
 return t

def interval_host(host, time, f, *args, **kwargs):
 """
 Creates an Event attached to the *host* that will execute the *f*
 function every *time* seconds.

 See example in :ref:`sample_inter`

 :param Proxy host: host proxy. Can be obtained from inside a
 class with ``self.host``.
 :param int time: seconds for the intervals.
 :param func f: function to be called every *time* seconds.
 :param list args: arguments for *f*.
 :return: :class:`Event` instance of the interval.
 """
 def wrap(*args, **kwargs):
 # thread = currentThread()
 args = list(args)
 stop_event = args[0]
 del args[0]
 args = tuple(args)
 while not stop_event.is_set():
 f(*args, **kwargs)
 stop_event.wait(time)
 host.detach_interval(thread_id)

 t2_stop = Event()
 args = list(args)
 args.insert(0, t2_stop)
 args = tuple(args)
 t = Thread(target=wrap, args=args, kwargs=kwargs)
 t.start()
 thread_id = t.getName()
 host.attach_interval(thread_id, t2_stop)
 return t2_stop

Thread Parallel

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

	import uuid
from threading import Lock, current_thread
from time import sleep

from .actor import Actor
from ..util import get_host, METHOD, PARAMS, TYPE, TELL

class ActorParallel(Actor):
 """
 Actor with parallel methods. Parallel methods are invoked in new
 threads, so their invocation do not block the actor allowing it to
 process many queries at a time.
 To avoid concurrence problems, this actors use Locks to guarantee
 its correct state.
 """

 def __init__(self, url, klass, obj):
 super(ActorParallel, self).__init__(url, klass, obj)
 self.__lock = Lock()
 self.pending = {}
 self.ask_parallel = (self.ask | self.ask_ref) & klass._parallel
 self.tell_parallel = (self.tell | self.tell_ref) & klass._parallel

 for method in self.ask_parallel:
 setattr(self._obj, method,
 ParallelAskWrapper(getattr(self._obj, method), self,
 self.__lock))
 for method in self.tell_parallel:
 setattr(self._obj, method,
 ParallelTellWrapper(getattr(self._obj, method), self,
 self.__lock))

 def receive(self, msg):
 """
 Overwriting :meth:`Actor.receive`. Adds the checks and
 features required by parallel methods.

 :param msg: The message is a dictionary using the constants
 defined in util.py (:mod:`pyactor.util`).
 """
 if msg[TYPE] == TELL and msg[METHOD] == 'stop':
 self.running = False
 else:
 try:
 invoke = getattr(self._obj, msg[METHOD])
 params = msg[PARAMS]

 if msg[METHOD] in self.ask_parallel:
 rpc_id = str(uuid.uuid4())
 # add rpc message to pendent AskResponse s
 self.pending[rpc_id] = msg
 # insert an rpc id to args
 para = list(params[0])
 para.insert(0, rpc_id)
 invoke(*para, **params[1])
 return
 else:
 with self.__lock:
 sleep(0.001)
 result = invoke(*params[0], **params[1])
 except Exception as e:
 result = e
 print(result)

 self.send_response(result, msg)

 def receive_from_ask(self, result, rpc_id):
 msg = self.pending[rpc_id]
 del self.pending[rpc_id]
 self.send_response(result, msg)

 def get_lock(self):
 """
 :return: :class:`Lock` of the actor.
 """
 return self.__lock

class ParallelAskWrapper(object):
 """Wrapper for ask methods that have to be called in a parallel way."""

 def __init__(self, method, actor, lock):
 self.__method = method
 self.__actor = actor
 self.__lock = lock

 def __call__(self, *args, **kwargs):
 args = list(args)
 rpc_id = args[0]
 del args[0]
 args = tuple(args)
 self.host = get_host()
 param = (self.__method, rpc_id, args, kwargs)
 self.host.new_parallel(self.invoke, param)

 def invoke(self, func, rpc_id, args, kwargs):
 # put the process in the host list pthreads
 self.host.pthreads[current_thread()] = self.__actor.url
 with self.__lock:
 sleep(0.001)
 try:
 result = func(*args, **kwargs)
 except Exception as e:
 result = e
 self.__actor.receive_from_ask(result, rpc_id)
 # remove the process from pthreads
 del self.host.pthreads[current_thread()]

class ParallelTellWrapper(object):
 """
 Wrapper for tell methods that have to be called in a parallel way.
 """

 def __init__(self, method, actor, lock):
 self.__method = method
 self.__actor = actor
 self.__lock = lock

 def __call__(self, *args, **kwargs):
 self.host = get_host()
 param = (self.__method, args, kwargs)
 self.host.new_parallel(self.invoke, param)

 def invoke(self, func, args, kwargs):
 self.host.pthreads[current_thread()] = self.__actor.url
 with self.__lock:
 sleep(0.001)
 func(*args, **kwargs)
 del self.host.pthreads[current_thread()]

Thread Future

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262

	import uuid
from threading import Condition, Thread

from .channel import Channel
from ..exceptions import PyActorTimeoutError, FutureError
from ..util import TELL, FUTURE, TYPE, METHOD, PARAMS, CHANNEL, TO
from ..util import get_current, get_host, get_lock, RPC_ID, RESULT

PENDING = 'PENDING'
RUNNING = 'RUNNING'
FINISHED = 'FINISHED'

class Future(object):
 """
 Container for the result of an ask query sent asynchronously which
 could not be resolved yet.

 :param str. fid: future ID.
 """

 def __init__(self, fid, future_ref, manager_channel):
 self.__condition = Condition()
 self.__state = PENDING
 self.__result = None
 self.__exception = None
 self.__callbacks = []

 self.__method = future_ref[METHOD]
 self.__params = future_ref[PARAMS]
 self.__actor_channel = future_ref[CHANNEL]
 self.__target = future_ref[TO]
 self.__channel = manager_channel
 self.__id = fid

 def _invoke_callbacks(self):
 for callback in self.__callbacks:
 try:
 # msg = TellRequest(TELL, callback[0], [self], callback[2])
 msg = {TYPE: TELL, METHOD: callback[0], PARAMS: ([self], {}),
 TO: callback[2]}
 callback[1].send(msg)
 except Exception as e:
 raise FutureError(
 f"Exception calling callback for {self!r}: {e!r}")

 def running(self):
 """Return True if the future is currently executing."""
 with self.__condition:
 return self.__state == RUNNING

 def done(self):
 """Return True if the future finished executing."""
 with self.__condition:
 return self.__state == FINISHED

 def __get__result(self):
 if self.__exception is not None:
 raise self.__exception
 else:
 return self.__result

 def add_callback(self, method):
 """
 Attaches a method that will be called when the future finishes.

 :param method: A callable from an actor that will be called
 when the future completes. The only argument for that
 method must be the future itself from which you can get the
 result though `future.:meth:`result()``. If the future has
 already completed, then the callable will be called
 immediately.

 .. note:: This functionality only works when called from an actor,
 specifying a method from the same actor.
 """
 from_actor = get_current()
 if from_actor is not None:
 callback = (method, from_actor.channel, from_actor.url)
 with self.__condition:
 if self.__state is not FINISHED:
 self.__callbacks.append(callback)
 return
 # Invoke the callback directly
 # msg = TellRequest(TELL, method, [self], from_actor.url)
 msg = {TYPE: TELL, METHOD: method, PARAMS: ([self], {}),
 TO: from_actor.url}
 from_actor.channel.send(msg)
 else:
 raise FutureError("add_callback only works when called " +
 "from inside an actor")

 def result(self, timeout=None):
 """
 Returns the result of the call that the future represents.

 :param timeout: The number of seconds to wait for the result
 if the future has not been completed. None, the default,
 sets no limit.
 :returns: The result of the call that the future represents.
 :raises: TimeoutError: If the timeout is reached before the
 future ends execution.
 :raises: Exception: If the call raises the Exception.
 """
 with self.__condition:
 if self.__state == FINISHED:
 return self.__get__result()

 lock = get_lock()
 if lock is not None:
 lock.release()
 self.__condition.wait(timeout)
 if lock is not None:
 lock.acquire()

 if self.__state == FINISHED:
 return self.__get__result()
 else:
 raise PyActorTimeoutError(f"Future: {self.__method!r}")

 def exception(self, timeout=None):
 """
 Return a exception raised by the call that the future
 represents.
 :param timeout: The number of seconds to wait for the exception
 if the future has not been completed. None, the default,
 sets no limit.
 :returns: The exception raised by the call that the future
 represents or None if the call completed without raising.
 :raises: TimeoutError: If the timeout is reached before the
 future ends execution.
 """
 with self.__condition:
 if self.__state == FINISHED:
 return self.__exception

 lock = get_lock()
 if lock is not None:
 lock.release()
 self.__condition.wait(timeout)
 if lock is not None:
 lock.acquire()

 if self.__state == FINISHED:
 return self.__exception
 else:
 raise PyActorTimeoutError(f"Future: {self.__method!r}")

 def send_work(self):
 """
 Sends the query to the actor for it to start executing the work.

 It is possible to execute once again a future that has finished
 if necessary (overwriting the results), but only one execution
 at a time.
 """
 if self.__set_running():
 # msg = FutureRequest(FUTURE, self.__method, self.__params,
 # self.__channel, self.__target, self.__id)
 msg = {TYPE: FUTURE, METHOD: self.__method, PARAMS: self.__params,
 CHANNEL: self.__channel, TO: self.__target,
 RPC_ID: self.__id}
 self.__actor_channel.send(msg)
 else:
 raise FutureError("Future already running.")

 def __set_running(self):
 # """This is only called internally from send_work().
 # It marks the future as running or returns false if it
 # already was running."""
 with self.__condition:
 if self.__state in [PENDING, FINISHED]:
 self.__state = RUNNING
 return True
 elif self.__state == RUNNING:
 return False

 def set_result(self, result):
 """
 Sets the return value of work associated with the future.
 Only called internally.
 """
 with self.__condition:
 self.__result = result
 self.__state = FINISHED
 self.__condition.notify_all()
 self._invoke_callbacks()

 def set_exception(self, exception):
 """
 Sets the result of the future as being the given exception.
 Only called internally.
 """
 with self.__condition:
 self.__exception = exception
 self.__state = FINISHED
 self.__condition.notify_all()
 self._invoke_callbacks()

class FutureRef(Future):
 def result(self, timeout=None):
 """
 Returns the result of the call that the future represents.

 :param timeout: The number of seconds to wait for the result
 if the future has not been completed. None, the default,
 sets no limit.
 :returns: The result of the call that the future represents.
 :raises: TimeoutError: If the timeout is reached before the
 future ends execution.
 :raises: Exception: If the call raises the Exception.
 """
 result = super(FutureRef, self).result(timeout)
 return get_host().loads(result)

class FutureManager(object):
 """
 A manager that controls the creation and execution of the futures in a host.
 """

 def __init__(self):
 self.running = False
 self.channel = Channel()
 self.futures = {}
 self.t = None

 def __queue_management(self):
 self.running = True
 while self.running:
 response = self.channel.receive()
 if response == 'stop':
 self.running = False
 else:
 result = response[RESULT]
 future = self.futures[response[RPC_ID]]
 if isinstance(result, Exception):
 future.set_exception(result)
 else:
 future.set_result(result)

 def new_future(self, future_ref, ref=False):
 future_id = str(uuid.uuid4())
 if not ref:
 future = Future(future_id, future_ref, self.channel)
 else:
 future = FutureRef(future_id, future_ref, self.channel)
 future.send_work()
 self.futures[future_id] = future

 if not self.running:
 self.t = Thread(target=self.__queue_management)
 self.t.start()
 return future

 def stop(self):
 self.channel.send('stop')
 if self.t is not None:
 self.t.join()
 self.t = None
 self.futures = {}

Thread Dispatcher

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108

	import uuid
import pickle
import traceback
from urllib.parse import urlparse
from importlib import import_module

from .actor import Actor
from .channel import Channel
from ..util import FUTURE, ASK_RESPONSE, FUTURE_RESPONSE
from ..util import TYPE, METHOD, TELL, ASK, CHANNEL, FROM, TO, RPC_ID

class RPCDispatcher(Actor):
 """
 This is the actor that will manage remote sends and receives
 with other hosts. Each host has one, configured depending on
 the scheme specified when created.
 """

 def __init__(self, url, host, mode):
 self.server_model = import_module('pyactor.' + mode + 'server')
 self.url = url
 self.host = host
 aurl = urlparse(url)
 address = aurl.netloc.split(':')
 ip, port = address[0], address[1]
 self.source = self.server_model.Source((ip, int(port)))
 self.source.register_function(self.on_message)
 self.source.start()
 self.running = True
 self.channel = Channel()
 self.pending = {} # Sent to another host
 self.executing = {} # Waiting for the response in this server
 self.tell = ['stop']
 self.ask = []
 self.ask_ref = []
 self.tell_ref = []
 self.sinks = {}

 def get_sink(self, url):
 if url in self.sinks.keys():
 return self.sinks[url]
 else:
 self.sinks[url] = self.server_model.Sink(url)
 return self.sinks[url]

 def receive(self, msg):
 if msg[TYPE] == TELL and msg[METHOD] == 'stop':
 self.running = False
 self.source.stop()
 else:
 try:
 if msg[TYPE] == TELL:
 self.get_sink(msg[TO]).send(msg)
 elif msg[TYPE] == ASK:
 rpc_id = str(uuid.uuid4())
 msg[RPC_ID] = rpc_id
 self.pending[rpc_id] = msg[CHANNEL]
 del msg[CHANNEL]
 msg[FROM] = self.url
 self.get_sink(msg[TO]).send(msg)
 elif msg[TYPE] == ASK_RESPONSE or msg[TYPE] == FUTURE_RESPONSE:
 try:
 if msg[RPC_ID] in self.executing.keys():
 sink = self.get_sink(self.executing[msg[RPC_ID]])
 sink.send(msg)
 del self.executing[msg[RPC_ID]]
 except TypeError as p:
 print("Pickle ERR: impossible to marshall a return." +
 " Returning a Proxy without the method in " +
 f"_ref? {p}")
 except Exception as e:
 print(("Error sending a response to {!r}. "
 .format(self.executing[msg[RPC_ID]])) + str(e))
 del self.executing[msg[RPC_ID]]
 elif msg[TYPE] == FUTURE:
 rpc_id = msg[RPC_ID]
 self.pending[rpc_id] = msg[CHANNEL]
 del msg[CHANNEL]
 msg[FROM] = self.url
 self.get_sink(msg[TO]).send(msg)
 except TypeError as p:
 print("Pickle ERROR: impossible to marshall a parameter." +
 f"Passing a Proxy without the method in _ref? {p}")
 except Exception as e:
 print(e)

 def on_message(self, msg):
 try:
 msg = pickle.loads(msg.data)
 if msg[TYPE] == TELL:
 self.host.actors[msg[TO]].channel.send(msg)
 elif msg[TYPE] == ASK or msg[TYPE] == FUTURE:
 # Save rpc id and actor channel
 rpc_id = msg[RPC_ID]
 self.executing[rpc_id] = msg[FROM]
 # Change msg callback channel, add id
 msg[CHANNEL] = self.channel
 self.host.actors[msg[TO]].channel.send(msg)
 elif msg[TYPE] == ASK_RESPONSE or msg[TYPE] == FUTURE_RESPONSE:
 if msg[RPC_ID] in self.pending.keys():
 self.pending[msg[RPC_ID]].send(msg)
 del self.pending[msg[RPC_ID]]
 except KeyError as ke:
 print("ERROR: The actor", ke, "is offline.")
 except Exception as e:
 print(f"{self.url} :#: Connection ERROR: {e}")
 traceback.print_exc()

Green Thread Actor

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

	from copy import copy

from gevent import spawn

from .channel import Channel
from .future import FutureManager
from ..util import ASK, TELL, FUTURE, TYPE, ASK_RESPONSE, FUTURE_RESPONSE
from ..util import METHOD, PARAMS, RESULT, CHANNEL, RPC_ID
from ..util import ref_l, ref_d

class ActorRef(object):
 """
 ActorRef contains the main components of an actor. These are the
 URL where it is located, the communication :class:`~.Channel` and
 the class of the actor as also the synchronous and asynchronous
 methods the class implements. When no channel is specified a new
 one will be created which is also the default procedure.

 .. note:: This is a superclass of :py:class:`Actor` and has no
 direct functionality.

 """

 def __init__(self, url, klass, channel=None):
 self.url = url
 self.tell = set()
 self.ask = set()
 self.klass = klass
 if channel:
 self.channel = channel
 else:
 self.channel = Channel()
 if hasattr(klass, '_tell') and klass._tell:
 self.tell = copy(klass._tell)
 if hasattr(klass, '_ask') and klass._ask:
 self.ask = copy(klass._ask)

 if hasattr(klass, '_ref'):
 self.receive = ref_l(self, self.receive)
 self.send_response = ref_d(self, self.send_response)

 self.tell_ref = self.tell & klass._ref
 self.ask_ref = self.ask & klass._ref
 for method in self.ask_ref:
 self.ask.remove(method)
 for method in self.tell_ref:
 self.tell.remove(method)
 else:
 self.ask_ref = set()
 self.tell_ref = set()

 self.tell.add('stop')

 def receive(self, msg):
 raise NotImplementedError()

 def send_response(self, result, msg):
 raise NotImplementedError()

 @property
 def _ref(self):
 return self.tell_ref | self.ask_ref

 def __str__(self):
 return f"Actor {self.url} ({self.klass.__name__})"

 def __repr__(self):
 return f"Actor(url={self.url}, class={self.klass})"

class Actor(ActorRef):
 """
 Actor is the instance of an object to which is possible to access
 and invoke its methods remotely. Main element of the model. The
 host is the one to create them (spawning -> see :meth:`~.spawn`).

 :param str. url: URL where the actor is running.
 :param class klass: class type for the actor.
 :param klass obj: instance of the *klass* class to attach to the
 actor.
 """

 def __init__(self, url, klass, obj):
 super(Actor, self).__init__(url, klass)
 self._obj = obj
 self.id = obj.id
 self.running = True
 self.thread = None
 self.future_manager = FutureManager()

 def __process_queue(self):
 while self.running:
 message = self.channel.receive()
 self.receive(message)

 def is_alive(self):
 """
 :return: (*bool.*) identifies the current state of the actor.
 True if it is running.
 """
 return self.running

 def receive(self, msg):
 """
 The message received from the queue specifies a method of the
 class the actor represents. This invokes it. If the
 communication is an ASK, sends the result back
 to the channel included in the message as an ASK_RESPONSE.

 If it is a FUTURE, generates a FUTURE_RESPONSE
 to send the result to the manager.

 :param msg: The message is a dictionary using the constants
 defined in util.py (:mod:`pyactor.util`).
 """
 if msg[TYPE] == TELL and msg[METHOD] == 'stop':
 self.running = False
 self.future_manager.stop()
 else:
 try:
 invoke = getattr(self._obj, msg[METHOD])
 params = msg[PARAMS]
 result = invoke(*params[0], **params[1])
 except Exception as e:
 if msg[TYPE] == TELL:
 print(e)
 return
 result = e
 self.send_response(result, msg)

 def send_response(self, result, msg):
 if msg[TYPE] == ASK:
 response = {TYPE: ASK_RESPONSE, RESULT: result,
 RPC_ID: msg[RPC_ID] if RPC_ID in msg.keys() else None}
 msg[CHANNEL].send(response)
 elif msg[TYPE] == FUTURE:
 response = {TYPE: FUTURE_RESPONSE, RPC_ID: msg[RPC_ID],
 RESULT: result}
 msg[CHANNEL].send(response)

 def run(self):
 """
 Creates the actor thread which will process the channel queue
 while the actor :meth:`is_alive`, making it able to receive
 queries.
 """
 self.thread = spawn(self.__process_queue)

Grenn Thread Intervals

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

	from gevent.event import Event
from gevent import spawn
from gevent import sleep as gsleep

def sleep(seconds):
 """
 Facade for the sleep function. Do not use time.sleep if you are
 running green threads.

 :param int time: time to sleep, in seconds. (Float for second
 divisions)
 """
 gsleep(seconds)

def later(timeout, f, *args, **kwargs):
 """
 Sets a timer that will call the *f* function past *timeout* seconds.

 See example in :ref:`sample_inter`

 :return: :class:`Greenlet` new 'thread' which will perform the call
 when specified.
 """
 def wrap(*args, **kwargs):
 sleep(timeout)
 return f(*args, **kwargs)

 return spawn(wrap, *args, **kwargs)

def interval_host(host, time, f, *args, **kwargs):
 """
 Creates an Event attached to the *host* that will execute the *f*
 function every *time* seconds.

 See example in :ref:`sample_inter`

 :param Proxy host: host proxy. Can be obtained from inside a
 class with ``self.host``.
 :param int time: seconds for the intervals.
 :param func f: function to be called every *time* seconds.
 :param list args: arguments for *f*.
 :return: :class:`Event` instance of the interval.
 """
 def wrap(*args, **kwargs):
 # thread = getcurrent()
 args = list(args)
 stop_event = args[0]
 del args[0]
 args = tuple(args)
 while not stop_event.is_set():
 f(*args, **kwargs)
 stop_event.wait(time)
 host.detach_interval(thread_id)

 t2_stop = Event()
 args = list(args)
 args.insert(0, t2_stop)
 args = tuple(args)
 t = spawn(wrap, *args, **kwargs)
 thread_id = t
 host.attach_interval(thread_id, t2_stop)
 return t2_stop

Green Thread Parallel

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

	import uuid

from gevent import getcurrent

from .actor import Actor
from ..util import get_host, METHOD, PARAMS, TYPE, TELL

class ActorParallel(Actor):
 """
 Actor with parallel methods. Parallel methods are invoked in new
 threads, so their invocation do not block the actor allowing it to
 process many queries at a time.
 Green threads do not have concurrence problems so no need to use
 Locks in this implementation.
 """

 def __init__(self, url, klass, obj):
 super(ActorParallel, self).__init__(url, klass, obj)
 self.pending = {}
 self.ask_parallel = (self.ask | self.ask_ref) & klass._parallel
 self.tell_parallel = (self.tell | self.tell_ref) & klass._parallel

 for method in self.ask_parallel:
 setattr(self._obj, method,
 ParallelAskWrapper(getattr(self._obj, method), self))
 for method in self.tell_parallel:
 setattr(self._obj, method,
 ParallelTellWrapper(getattr(self._obj, method), self))

 def receive(self, msg):
 """
 Overwriting :meth:`Actor.receive`. Adds the checks and
 features required by parallel methods.

 :param msg: The message is a dictionary using the constants
 defined in util.py (:mod:`pyactor.util`).
 """
 if msg[TYPE] == TELL and msg[METHOD] == 'stop':
 self.running = False
 else:
 try:
 invoke = getattr(self._obj, msg[METHOD])
 params = msg[PARAMS]

 if msg[METHOD] in self.ask_parallel:
 rpc_id = str(uuid.uuid4())
 # add rpc message to pendent AskResponse s
 self.pending[rpc_id] = msg
 # insert an rpc id to args
 para = list(params[0])
 para.insert(0, rpc_id)
 invoke(*para, **params[1])
 return
 else:
 result = invoke(*params[0], **params[1])
 except Exception as e:
 result = e
 print(result)
 self.send_response(result, msg)

 def receive_from_ask(self, result, rpc_id):
 msg = self.pending[rpc_id]
 del self.pending[rpc_id]
 self.send_response(result, msg)

 # For compatibility. Green threads do not use Locks.
 def get_lock(self):
 return None

class ParallelAskWrapper(object):
 """Wrapper for ask methods that have to be called in a parallel way."""

 def __init__(self, method, actor):
 self.__method = method
 self.__actor = actor

 def __call__(self, *args, **kwargs):
 args = list(args)
 rpc_id = args[0]
 del args[0]
 args = tuple(args)
 self.host = get_host()
 param = (self.__method, rpc_id, args, kwargs)
 self.host.new_parallel(self.invoke, param)

 def invoke(self, func, rpc_id, args, kwargs):
 # put the process in the host list pthreads
 self.host.pthreads[getcurrent()] = self.__actor.url
 try:
 result = func(*args, **kwargs)
 except Exception as e:
 result = e
 self.__actor.receive_from_ask(result, rpc_id)
 # remove the process from pthreads
 del self.host.pthreads[getcurrent()]

class ParallelTellWrapper(object):
 """
 Wrapper for tell methods that have to be called in a parallel way.
 """

 def __init__(self, method, actor):
 self.__method = method
 self.__actor = actor

 def __call__(self, *args, **kwargs):
 self.host = get_host()
 param = (self.__method, args, kwargs)
 self.host.new_parallel(self.invoke, param)

 def invoke(self, func, args, kwargs):
 # put the process in the host list pthreads
 self.host.pthreads[getcurrent()] = self.__actor.url
 func(*args, **kwargs)
 # remove the process from pthreads
 del self.host.pthreads[getcurrent()]

Green Thread Future

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

	import uuid

from gevent import spawn
from gevent.event import Event

from .channel import Channel
from ..exceptions import PyActorTimeoutError, FutureError
from ..util import TELL, FUTURE, TYPE, METHOD, PARAMS, CHANNEL, TO
from ..util import get_current, get_host, RPC_ID, RESULT

PENDING = 'PENDING'
RUNNING = 'RUNNING'
FINISHED = 'FINISHED'

class Future(object):
 """
 Container for the result of an ask query sent asynchronously which
 could not be resolved yet.

 :param str. fid: future ID.
 """

 def __init__(self, fid, future_ref, manager_channel):
 self.__condition = Event()
 self.__state = PENDING
 self.__result = None
 self.__exception = None
 self.__callbacks = []

 self.__method = future_ref[METHOD]
 self.__params = future_ref[PARAMS]
 self.__actor_channel = future_ref[CHANNEL]
 self.__target = future_ref[TO]
 self.__channel = manager_channel
 self.__id = fid

 def _invoke_callbacks(self):
 for callback in self.__callbacks:
 try:
 # msg = TellRequest(TELL, callback[0], [self], callback[2])
 msg = {TYPE: TELL, METHOD: callback[0], PARAMS: ([self], {}),
 TO: callback[2]}
 callback[1].send(msg)
 except Exception as e:
 raise FutureError(
 f"Exception calling callback for {self!r}: {e!r}")

 def running(self):
 """Return True if the future is currently executing."""
 # with self.__condition:
 return self.__state == RUNNING

 def done(self):
 """Return True if the future finished executing."""
 # with self.__condition:
 return self.__state == FINISHED

 def __get__result(self):
 if self.__exception is not None:
 raise self.__exception
 else:
 return self.__result

 def add_callback(self, method):
 """
 Attaches a method that will be called when the future finishes.

 :param method: A callable from an actor that will be called
 when the future completes. The only argument for that
 method must be the future itself from which you can get the
 result though `future.:meth:`result()``. If the future has
 already completed, then the callable will be called
 immediately.

 .. note:: This functionality only works when called from an actor,
 specifying a method from the same actor.
 """
 from_actor = get_current()
 if from_actor is not None:
 callback = (method, from_actor.channel, from_actor.url)
 # with self.__condition:
 if self.__state is not FINISHED:
 self.__callbacks.append(callback)
 return
 # Invoke the callback directly
 # msg = TellRequest(TELL, method, [self], from_actor.url)
 msg = {TYPE: TELL, METHOD: method, PARAMS: ([self], {}),
 TO: from_actor.url}
 from_actor.channel.send(msg)
 else:
 raise FutureError("add_callback only works when called " +
 "from inside an actor")

 def result(self, timeout=None):
 """
 Returns the result of the call that the future represents.

 :param timeout: The number of seconds to wait for the result
 if the future has not been completed. None, the default,
 sets no limit.
 :returns: The result of the call that the future represents.
 :raises: TimeoutError: If the timeout is reached before the
 future ends execution.
 :raises: Exception: If the call raises the Exception.
 """
 # with self.__condition:
 if self.__state == FINISHED:
 return self.__get__result()

 self.__condition.wait(timeout)

 if self.__state == FINISHED:
 return self.__get__result()
 else:
 raise PyActorTimeoutError(f"Future: {self.__method!r}")

 def exception(self, timeout=None):
 """
 Return a exception raised by the call that the future
 represents.
 :param timeout: The number of seconds to wait for the exception
 if the future has not been completed. None, the default,
 sets no limit.
 :returns: The exception raised by the call that the future
 represents or None if the call completed without raising.
 :raises: TimeoutError: If the timeout is reached before the
 future ends execution.
 """
 # with self.__condition:
 if self.__state == FINISHED:
 return self.__exception

 self.__condition.wait(timeout)

 if self.__state == FINISHED:
 return self.__exception
 else:
 raise PyActorTimeoutError(f"Future: {self.__method!r}")

 def send_work(self):
 """
 Sends the query to the actor for it to start executing the work.

 It is possible to execute once again a future that has finished
 if necessary (overwriting the results), but only one execution
 at a time.
 """
 if self.__set_running():
 # msg = FutureRequest(FUTURE, self.__method, self.__params,
 # self.__channel, self.__target, self.__id)
 msg = {TYPE: FUTURE, METHOD: self.__method, PARAMS: self.__params,
 CHANNEL: self.__channel, TO: self.__target,
 RPC_ID: self.__id}
 self.__actor_channel.send(msg)
 else:
 raise FutureError("Future already running.")

 def __set_running(self):
 # """This is only called internally from send_work().
 # It marks the future as running or returns false if it
 # already was running."""
 # with self.__condition:
 if self.__state in [PENDING, FINISHED]:
 self.__condition.clear()
 self.__state = RUNNING
 return True
 elif self.__state == RUNNING:
 return False

 def set_result(self, result):
 """
 Sets the return value of work associated with the future.
 Only called internally.
 """
 # with self.__condition:
 self.__result = result
 self.__state = FINISHED
 self.__condition.set()
 self._invoke_callbacks()

 def set_exception(self, exception):
 """
 Sets the result of the future as being the given exception.
 Only called internally.
 """
 # with self.__condition:
 self.__exception = exception
 self.__state = FINISHED
 self.__condition.set()
 self._invoke_callbacks()

class FutureRef(Future):
 def result(self, timeout=None):
 """
 Returns the result of the call that the future represents.

 :param timeout: The number of seconds to wait for the result
 if the future has not been completed. None, the default,
 sets no limit.
 :returns: The result of the call that the future represents.
 :raises: TimeoutError: If the timeout is reached before the
 future ends execution.
 :raises: Exception: If the call raises the Exception.
 """
 result = super(FutureRef, self).result(timeout)
 return get_host().loads(result)

class FutureManager(object):
 """
 A manager that controls the creation and execution of the futures in a host.
 """

 def __init__(self):
 self.running = False
 self.channel = Channel()
 self.futures = {}
 self.t = None

 def __queue_management(self):
 self.running = True
 while self.running:
 response = self.channel.receive()
 if response == 'stop':
 self.running = False
 else:
 result = response[RESULT]
 future = self.futures[response[RPC_ID]]
 if isinstance(result, Exception):
 future.set_exception(result)
 else:
 future.set_result(result)

 def new_future(self, future_ref, ref=False):
 future_id = str(uuid.uuid4())
 if not ref:
 future = Future(future_id, future_ref, self.channel)
 else:
 future = FutureRef(future_id, future_ref, self.channel)
 future.send_work()
 self.futures[future_id] = future

 if not self.running:
 self.t = spawn(self.__queue_management)
 return future

 def stop(self):
 self.channel.send('stop')
 if self.t is not None:
 self.t.join()
 self.t = None
 self.futures = {}

Green Thread Dispatcher

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108

	import uuid
import pickle
import traceback
from urllib.parse import urlparse
from importlib import import_module

from .actor import Actor
from .channel import Channel
from ..util import FUTURE, ASK_RESPONSE, FUTURE_RESPONSE
from ..util import TYPE, METHOD, TELL, ASK, CHANNEL, FROM, TO, RPC_ID

class RPCDispatcher(Actor):
 """
 This is the actor that will manage remote sends and receives
 with other hosts. Each host has one, configured depending on
 the scheme specified when created.
 """

 def __init__(self, url, host, mode):
 self.server_model = import_module('pyactor.' + mode + 'server')
 self.url = url
 self.host = host
 aurl = urlparse(url)
 address = aurl.netloc.split(':')
 ip, port = address[0], address[1]
 self.source = self.server_model.Source((ip, int(port)))
 self.source.register_function(self.on_message)
 self.source.start()
 self.running = True
 self.channel = Channel()
 self.pending = {} # Sent to another host
 self.executing = {} # Waiting for the response in this server
 self.tell = ['stop']
 self.ask = []
 self.ask_ref = []
 self.tell_ref = []
 self.sinks = {}

 def get_sink(self, url):
 if url in self.sinks.keys():
 return self.sinks[url]
 else:
 self.sinks[url] = self.server_model.Sink(url)
 return self.sinks[url]

 def receive(self, msg):
 if msg[TYPE] == TELL and msg[METHOD] == 'stop':
 self.running = False
 self.source.stop()
 else:
 try:
 if msg[TYPE] == TELL:
 self.get_sink(msg[TO]).send(msg)
 elif msg[TYPE] == ASK:
 rpc_id = str(uuid.uuid4())
 msg[RPC_ID] = rpc_id
 self.pending[rpc_id] = msg[CHANNEL]
 del msg[CHANNEL]
 msg[FROM] = self.url
 self.get_sink(msg[TO]).send(msg)
 elif msg[TYPE] == ASK_RESPONSE or msg[TYPE] == FUTURE_RESPONSE:
 try:
 if msg[RPC_ID] in self.executing.keys():
 sink = self.get_sink(self.executing[msg[RPC_ID]])
 sink.send(msg)
 del self.executing[msg[RPC_ID]]
 except TypeError as p:
 print("Pickle ERR: impossible to marshall a return." +
 " Returning a Proxy without the method in " +
 f"_ref? {p}")
 except Exception as e:
 print(("Error sending a response to {!r}. "
 .format(self.executing[msg[RPC_ID]])) + str(e))
 del self.executing[msg[RPC_ID]]
 elif msg[TYPE] == FUTURE:
 rpc_id = msg[RPC_ID]
 self.pending[rpc_id] = msg[CHANNEL]
 del msg[CHANNEL]
 msg[FROM] = self.url
 self.get_sink(msg[TO]).send(msg)
 except TypeError as p:
 print("Pickle ERROR: impossible to marshall a parameter." +
 f"Passing a Proxy without the method in _ref? {p}")
 except Exception as e:
 print(e)

 def on_message(self, msg):
 try:
 msg = pickle.loads(msg.data)
 if msg[TYPE] == TELL:
 self.host.actors[msg[TO]].channel.send(msg)
 elif msg[TYPE] == ASK or msg[TYPE] == FUTURE:
 # Save rpc id and actor channel
 rpc_id = msg[RPC_ID]
 self.executing[rpc_id] = msg[FROM]
 # Change msg callback channel, add id
 msg[CHANNEL] = self.channel
 self.host.actors[msg[TO]].channel.send(msg)
 elif msg[TYPE] == ASK_RESPONSE or msg[TYPE] == FUTURE_RESPONSE:
 if msg[RPC_ID] in self.pending.keys():
 self.pending[msg[RPC_ID]].send(msg)
 del self.pending[msg[RPC_ID]]
 except KeyError as ke:
 print("ERROR: The actor", ke, "is offline.")
 except Exception as e:
 print(f"{self.url} :#: Connection ERROR: {e}")
 traceback.print_exc()

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to PyActor’s documentation!

 		
 Tutorial

 		
 Installation

 		
 Global indications

 		
 Sample 1 - Basic

 		
 Sample 2 - Sync

 		
 Sample 3 - Timeout

 		
 Sample 4 - Lookup

 		
 Sample 5 - References to actors

 		
 Sample 6 - self.id, proxy and host

 		
 Sample 7 - References extended

 		
 Sample 8 - Futures

 		
 Sample 9 - Callback

 		
 Sample 10 - Parallel

 		
 Sample 11 - Intervals

 		
 Sample 1b - Stopping an Actor (Advanced)

 		
 Remote Tutorial

 		
 Sample 1 - Basic communication

 		
 Sample 2 - Basic communication 2

 		
 Sample 3 - Remote spawning

 		
 Sample 4 - Registry example

 		
 Sample 5 - Multiple Hosts

 		
 Using RabbitMQ

 		
 Main Code

 		
 Context

 		
 Proxy

 		
 Util

 		
 Remote Solutions

 		
 Exceptions

 		
 Threading Type

 		
 Actor

 		
 Intervals

 		
 Parallel

 		
 Future

 		
 Gevent Type

 		
 Actor

 		
 Intervals

 		
 Parallel

 		
 Future

_static/up-pressed.png

_static/up.png

